scispace - formally typeset
Search or ask a question
Book ChapterDOI

Switched Reluctance Motor Converter Topologies: A Review

01 Jan 2020-Vol. 626, pp 55-63
TL;DR: This paper reviews the various power convertor topologies developed for the SRM and provides indepth analysis with completely different topologies emerged and presented less torsion ripple, high potency, high power issue, and high power density.
Abstract: Many reserachers focuses on the special machine like Switched reluctance motor (SRM) because of peculiar performance compared to various standard motors. This paper reviews the various power convertor topologies developed for the SRM. Switched reluctance motor (SRM) is gaining abundant interest in industrial applications like wind energy systems and electrical vehicles—thanks to its straightforward and rugged construction, high‐speed operation ability, inability to warm temperature, and its options of fault tolerance. This paper provides indepth analysis with completely different topologies have been emerged and presented less torsion ripple, high potency, high power issue, and high power density. However, there has forever been a trade‐off between gaining a number of the advantageous and losing some with every new technology. During this chapter, numerous SRM topologies, design, principle of operation, and individual section change schemes are extensively reviewed, and their blessings and downsides are mentioned.
Citations
More filters
Journal ArticleDOI
TL;DR: The viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered and Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.
Abstract: Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.

4 citations

Journal ArticleDOI
TL;DR: This paper elaborates on the design methodology and the analysis of various phases of operation of SRMs, and the finite element method of optimization is used to enhance motor performance.
Abstract: Switched reluctance motor (SRM) is attracting the scientific community in recent days because of its special structural benefits. Good research work has been conducted on this machine since the ages. It has evolved as an alternative to the conventional electrical machines in variable speed drives due to rugged architecture, high-speed operation, four quadrants, lack of magnet, and adaptability to harsh surroundings. This paper reviews different topologies of SRM for electric vehicle (EV) application and a comparative study of suitable machines for electric vehicle propulsion. This paper elaborates on the design methodology and the analysis of various phases of operation of SRMs. During the design procedure, the finite element method (FEM) of optimization is used to enhance motor performance. In this study, the three different phase (3, 4 and 6) motors are analyzed in machine design software and finite element analysis outcomes and SRM simulation approach are discussed.

3 citations

Journal ArticleDOI
20 Apr 2023-Sensors
TL;DR: In this article , an optimized step rotor bearingless switched reluctance motor (BLSRM) was proposed to solve the poor self-starting ability and significant torque fluctuation issues in traditional BLSRMs.
Abstract: This paper studies motor structures and optimization methods for space robots, proposing an optimized stepped rotor bearingless switched reluctance motor (BLSRM) to solve the poor self-starting ability and significant torque fluctuation issues in traditional BLSRMs. Firstly, the advantages and disadvantages of the 12/14 hybrid stator pole type BLSRM were analyzed, and a stepped rotor BLSRM structure was designed. Secondly, the particle swarm optimization (PSO) algorithm was improved and combined with finite element analysis for motor structure parameter optimization. Subsequently, a performance analysis of the original and new motors was conducted using finite element analysis software, and the results showed that the stepped rotor BLSRM had an improved self-starting ability and significantly reduced torque fluctuation, verifying the effectiveness of the proposed motor structure and optimization method.
References
More filters
Journal ArticleDOI
TL;DR: In this paper, a control technique for torque-ripple minimization in the switched reluctance motor (SRM) drive, based on a torque sharing function (TSF) concept, is presented.
Abstract: This paper presents a control technique for torque-ripple minimization in the switched reluctance motor (SRM) drive, based on a torque-sharing function (TSF) concept. In the proposed method, the reference torque is directly translated into the reference current waveform using the analytical expression. Optimization criteria of a TSF that are concerned with secondary objectives, such as minimization of copper losses or maximization of drive performance, are described. In addition, a novel family of TSFs is introduced. An optimal TSF can be easily extracted from the proposed family to satisfy one of the secondary objectives or to create balance between more of them. Control performances of the two extracted TSFs and the two optimized conventional (linear and sinusoidal) TSFs are compared. These four TSFs keep the copper losses to nearly the theoretical minimum. Each of them provides approximately the same operation efficiency of the considered three-phase 6/4 SRM drive. However, due to extension of the commutation angle between adjacent phases, TSFs from the proposed family provide better torque-speed characteristics. Moreover, one of them expands the possible speed range of torque-ripple-free drive operation, and another one, which provides the best torque-speed characteristics, reduces the peak phase current.

248 citations

Journal ArticleDOI
TL;DR: In this paper, a sensorless control scheme for the switched reluctance motor (SRM) drive at low speed is presented, where the incremental inductance of each active phase is estimated using the terminal measurement of this phase.
Abstract: A sensorless control scheme for the switched reluctance motor (SRM) drive at low speed is presented in this paper. The incremental inductance of each active phase is estimated using the terminal measurement of this phase. The estimated phase incremental inductance is compared to an analytical model, which represents the functional relationships between the phase incremental inductance, phase current, and rotor position, to estimate the rotor position. The presented sensorless control scheme requires neither extra hardware nor huge memory space for implementation. It can provide accurate rotor position information even as the magnetic characteristics of the SRM change due to aging. Combined with other inductance model-based sensorless control techniques, the proposed method can be used to develop an inductance model-based sensorless control scheme to run the SRM from standstill to high-speed. Simulation and experimental results are presented to verify the proposed scheme.

204 citations

Journal ArticleDOI
TL;DR: A technical overview for low-noise switched reluctance motor (SRM) drives in electric vehicle (EV) applications is presented, including the machine topology improvement and control strategy design for radial vibration mitigation and torque ripple reduction and the research status on this topic is summarized and forecast research hotspots are presented.
Abstract: This paper presents a technical overview for low-noise switched reluctance motor (SRM) drives in electric vehicle (EV) applications. With ever-increasing concerns over environmental and cost issues associated with permanent magnet machines, there is a technical trend to utilize SRMs in some mass production markets. The SRM is gaining much interest for EVs due to its rare-earth-free characteristic and excellent performance. In spite of many advantages compared with conventional adjustable-speed drives, SRMs suffer from torque ripple and radial distortion (and thus noise and vibration) by their nature. Therefore, for high-performance vehicle applications, it is important and urgent to optimize the SRM system to overcome the drawbacks of the noise and vibration. In order to present clear solutions to the acoustic noise in SRMs, this paper starts by analyzing the mechanism of the radial vibration and torque ripples inherent in the motors, and then focuses on the state-of-the-art technologies to mitigate the radial force and torque ripples. It highlights two categories for low-noise SRMs, including the machine topology improvement and control strategy design for radial vibration mitigation and torque ripple reduction. Advanced technologies are reviewed, classified, and compared accordingly. In addition to these methodologies, the schemes that have been developed by authors are also presented and discussed. Finally, the research status on this topic is summarized and forecast research hotspots are presented. It is our intention that this paper provides the guidance on performance improvements for low-noise SRM drives in EV applications.

176 citations

PatentDOI
Ali Emadi1, Jin Ye1
TL;DR: In this paper, an extended-speed low-ripple torque control of a switched reluctance motor (SRM) using online torque sharing function (TSF) is described, and two operational modes of an online TSF are defined during the commutation: in Mode I, absolute value of rate of change of flux linkage (ARCFL) of incoming phase is higher than outgoing phase; in Mode II, ARCFL of outgoing phase is high than incoming phase.
Abstract: Various embodiments are described herein for an extended-speed low-ripple torque control of a switched reluctance motor (SRM) using online torque sharing function (TSF). Two operational modes of an online TSF are defined during the commutation: In Mode I, absolute value of rate of change of flux linkage (ARCFL) of incoming phase is higher than outgoing phase; in Mode II, ARCFL of outgoing phase is higher than incoming phase. To compensate the torque error produced by imperfect tracking of phase current, a proportional and integral compensator with torque error is added to the torque reference of outgoing phase in Mode I and incoming phase in Mode II. Therefore, the total torque is determined by the phase with lower ARCFL rather than the phase with higher ARCFL as in conventional TSFs.

163 citations

Journal ArticleDOI
TL;DR: A novel Lyapunov function-based direct torque controller for minimization of torque ripples in a switched reluctance motor (SRM) drive system is reported in this paper.
Abstract: A novel Lyapunov function-based direct torque controller for minimization of torque ripples in a switched reluctance motor (SRM) drive system is reported in this paper. SRM magnetization characteristics are highly nonlinear, where torque is a complex and coupled function of the phase currents and rotor position. The direct torque control (DTC) scheme avoids the complex process of torque-to-current conversion as required in indirect torque control scheme. The traditional DTC scheme uses a hysteresis-type torque controller and it leads to large amount of torque ripples when implemented digitally. The proposed controller is intended to take care of the nonlinear system dynamics of magnetic characteristics associated with accurate torque control using DTC scheme for the SRM drive system. In the Lyapunov function-based controller, the feedback gain is varied using a heuristic technique. The stability of the proposed controller is ensured by the direct method of Lyapunov. Experimental results for a 1-hp, 4-phase SRM are provided to demonstrate the efficacy of the proposed torque control scheme.

125 citations

Trending Questions (1)
What is the topologies of switched reluctance linear synchronous motor?

The provided paper does not mention the topologies of switched reluctance linear synchronous motor.