scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy.

TL;DR: In this article, male and female mice were exposed to 14 or 28 days of chronic unpredictable stress (CUS) to assess molecular and cellular adaptations of microglia, astrocytes, and neurons in the medial PFC.
About: This article is published in Neurobiology of Stress.The article was published on 2021-03-04 and is currently open access. It has received 38 citations till now. The article focuses on the topics: Chronic stress & Dendritic spine.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the role of microglia in pathological and physiological contexts is presented, and a framework is proposed to better describe changes in micro-glia1 phenotype and function in chronic stress.
Abstract: Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.

105 citations

Journal ArticleDOI
TL;DR: In this article, the diversity of microglial phenotype and function in health and psychiatric disease was discussed and microglia involvement in major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies.

37 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present evidence pointing towards associations between orofacial musculoskeletal pain and neuroendocrine imbalances, sleep disturbances, and alterations of the circadian timing system.

22 citations

Journal ArticleDOI
TL;DR: In this paper , the authors discuss candidate mechanisms by which stress induces microglia to deviate from its fine-tuned homeostasis in clinical and preclinical studies, which may contribute to the pathogenesis of depressive disorder.
Abstract: Major depressive disorder (MDD) is a debilitating neuropsychological disorder, which has caused serious health and socio-economic burdens worldwide. A growing body of evidence indicates that inflated neuroinflammation and aberrant microglial activity are associated with depressive-like symptoms. In the central nervous system (CNS), microglia constantly survey the internal environment, playing crucial roles in injury response and pathogen defense. From developmental stage through the whole adult life, microglia dynamically sculpt neural circuits by modulation of synaptic plasticity or engulfment of redundant synapses. Dysregulated microglia may impact these fundamental biophysiological processes and contribute to the pathogenesis of depressive disorder. In this review, we discuss candidate mechanisms by which stress induces microglia to deviate from its fine-tuned homeostasis in clinical and preclinical studies. These triggering factors include the neuroendocrine system, the noradrenergic system, gut-brain axis, and unbalanced pro- v.s. anti-inflammatory milieu composed of diversified cytokines and neurotransmitters. We argue that functional changes in microglia can strongly influence neuronal network activity due to dysregulated secretion of cytokines and elevated release of neurotoxic metabolites, therefore contributing to the pathological outcomes in stress. Understanding the role that microglia play in the etiology of depression may provide a tantalizing therapeutic target and help with the development of novel intervention strategies against this devastating mental health problem.

16 citations

Journal ArticleDOI
TL;DR: Various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders are reviewed, with a strong focus on MDD.
Abstract: Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain’s resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.

14 citations

References
More filters
Journal ArticleDOI
01 Dec 2001-Methods
TL;DR: The 2-Delta Delta C(T) method as mentioned in this paper was proposed to analyze the relative changes in gene expression from real-time quantitative PCR experiments, and it has been shown to be useful in the analysis of realtime, quantitative PCR data.

139,407 citations

Journal ArticleDOI
24 Jan 2003-Cell
TL;DR: A role is demonstrated for BDNF and its val/met polymorphism in human memory and hippocampal function and it is suggested val/ met exerts these effects by impacting intracellular trafficking and activity-dependent secretion of BDNF.

3,599 citations

Journal ArticleDOI
TL;DR: It is emphasized that sex is a biological variable that should be considered in immunological studies and contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females.
Abstract: Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

3,214 citations

Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: A novel microglia type associated with neurodegenerative diseases (DAM) is described and it is revealed that the DAM program is activated in a two-step process that involves downregulation of microglian checkpoints, followed by activation of a Trem2-dependent program.

2,854 citations

Journal ArticleDOI
TL;DR: The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity.
Abstract: The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re-establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits in the limbic forebrain, the hypothalamus and the brainstem, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity. Limbic regions that are responsible for regulating stress responses intersect with circuits that are responsible for memory and reward, providing a means to tailor the stress response with respect to prior experience and anticipated outcomes.

2,592 citations

Related Papers (5)