scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthesis and Optical Properties of Mn2+-Doped Amino Lead Halide Molecular Clusters Assisted by Chloride Ion.

03 Aug 2021-Journal of Physical Chemistry Letters (American Chemical Society (ACS))-Vol. 12, Iss: 31, pp 7497-7503
TL;DR: In this paper, a model for the formation of perovskite nanostructures was proposed to explain the formation mechanism of Mn2+-doped MCs with the help of time-resolved PL, Fourier transform infrared, and electron paramagnetic resonance results.
Abstract: Mn2+-doped amino lead halide molecular clusters (MCs) are synthesized using amine (e.g., n-octylamine, or butylamine) as passivating ligand and MnX2 (X = Cl or Br) as the Mn2+ doping source at room temperature. Their optical properties are investigated with UV-visible absorption, photoluminescence (PL), and PL excitation spectroscopy. The Mn2+ precursor plays a vital role in the synthesis of Mn2+-doped MCs. MnCl2 seems to facilitate the incorporation of Mn. The MnCl2 doping causes electronic absorption blue shift and leads to a spin-forbidden 4T1 → 6A1 Mn d-electron emission. With the help of time-resolved PL, Fourier transform infrared, and electron paramagnetic resonance results, a model is proposed to explain the formation mechanism. We suggest that Mn2+ doping replaces Pb2+ is assisted by Cl- ions that replace Br- ions. This study demonstrates the possibility of doping MCs and has important implications in gaining new fundamental insight into the growth mechanisms of perovskite nanostructures.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the impact of different molecular ligands on the surface passivation and interconversion of metal halide perovskite quantum dots and magic sized clusters (PMSCs) is discussed.
Abstract: Metal halide perovskite quantum dots (PQDs) and perovskite magic sized clusters (PMSCs) exhibit interesting size- and composition-dependent optoelectronic properties that are promising for emerging applications including photovoltaic solar cells and light-emitting diodes (LEDs). Much work has focused on developing new synthesis strategies to improve their structural stability and property tunability. In this paper, we review recent progress in the synthesis and characterization of PQDs and PMSCs, with a focus on the impact of different molecular ligands on their surface passivation and interconversion. Moreover, the effect of capping ligands on ion exchange during synthesis and doping is discussed. Finally, we present some perspectives on challenges and opportunities in fundamental studies and potential applications of both PQDs and PMSCs.

13 citations

Journal ArticleDOI
05 Oct 2022
TL;DR: In this paper , a hexagonal Mn2+-doped CsCdCl3 perovskite crystal was reported to have stable photoluminescence (PL) at both high temperature and humidity.
Abstract: Halide perovskite has been widely studied as a new generation of photoelectronic materials. However, their thermal and humidity-induced emission quenching have greatly limited their utility and reliability. Here, we report a hexagonal Mn2+-doped CsCdCl3 perovskite crystal that possesses stable photoluminescence (PL) at both high temperature and humidity. The room temperature long-persistent luminescence (LPL) of the single crystals lasts up to 1480 s and can be adjusted by changing the concentration of Mn2+ ion doping. The characteristic emission of d-d transition of Mn2+ is realized, and the photoluminescence quantum yield (PLQY) is up to 91.4%, it can maintain more than 90% of the initial PL spectral integral area at 150 °C (423 K). High humid stability PL can be achieved more than 75% of the initial PL intensity after 55 days of immersion in water. These excellent properties show the application prospect of the LPL material in lighting indication and anti-counterfeiting.

10 citations

Journal ArticleDOI
TL;DR: In this article , a layered structural model is proposed for nonsmallized molecular clusters with a BTYA ligand capping on the surface of the corner-shared tilted [PbBr6]4- octahedral framework.
Abstract: Nanosized molecular clusters (MCs) composed of PbBr2 and neutral ligand butylamine (BTYA) with unique optical properties in solution and solid states have been synthesized using ligand-assisted reprecipitation and spin-coating, separately. The studies of their optical properties using ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) show the first electronic absorption and PL band of the MCs at 401 and 411 nm, respectively, for the solution and solid state samples that exhibit good stability under ambient conditions. Low-temperature PL spectra below 30 K show vibronic peaks indicative of a single size or a very narrow size distribution of the MCs. On the basis of Raman, X-ray diffraction, and transmission electron microscopy measurements, a layered structural model is proposed for the MCs with a BTYA ligand capping on the surface of the corner-shared tilted [PbBr6]4- octahedral framework. The stable and retained structure of MCs in the solid state is promising for photonics applications.

3 citations

Journal ArticleDOI
TL;DR: In this article , it was shown that the near 400 nm band originates from ligand-passivated lead bromide molecular clusters (PbBr2 MCs), which do not contain the A component of the ABX3 perovskite structure.
Abstract: In the synthesis of cesium lead bromide (CsPbBr3) perovskite quantum dots, with an electronic absorption and emission band around 510 nm, and perovskite magic-sized clusters (PMSCs), with an electronic absorption and emission band around 430 nm, another distinct absorption and emission around 400 nm is often observed. While many would attribute this band to small perovskite particles, here we show strong evidence that this band is a result of the formation of lead bromide molecular clusters (PbBr2 MCs) passivated with ligands, which do not contain the A component of the ABX3 perovskite structure. This evidence comes from a systematic comparative study of the reaction products with and without the A component under otherwise identical experimental conditions. The results support that the near 400 nm band originates from ligand-passivated PbBr2 MCs. This observation seems to be quite general and is significant in understanding the nature of the reaction products in the synthesis of metal halide perovskite nanostructures.

2 citations

Journal ArticleDOI
TL;DR: In this paper , a hexagonal Mn2+-doped CsCdCl3 perovskite crystal was reported to have stable photoluminescence (PL) at both high temperature and humidity.
Abstract: Halide perovskite has been widely studied as a new generation of photoelectronic materials. However, their thermal and humidity-induced emission quenching have greatly limited their utility and reliability. Here, we report a hexagonal Mn2+-doped CsCdCl3 perovskite crystal that possesses stable photoluminescence (PL) at both high temperature and humidity. The room temperature long-persistent luminescence (LPL) of the single crystals lasts up to 1480 s and can be adjusted by changing the concentration of Mn2+ ion doping. The characteristic emission of d-d transition of Mn2+ is realized, and the photoluminescence quantum yield (PLQY) is up to 91.4 %, it can maintain more than 90 % of the initial PL spectral integral area at 150 °C (423 K). High humid stability PL can be achieved more than 75 % of the initial PL intensity after 55 days of immersion in water. These excellent properties show the application prospect of the LPL material in lighting indication and anti-counterfeiting.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: By elucidating the role of relative bond strengths within the precursor and the host lattice, this work develops an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I).
Abstract: Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II–VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8–3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the cor...

681 citations

Journal ArticleDOI
TL;DR: This work demonstrates an effective strategy through Mn2+ substitution to fundamentally stabilize perovskite lattices of CsPbX3 QDs even at high temperatures up to 200 °C under ambient air conditions and derives significantly improved thermal stability and optical performance from the enhanced formation energy due to the successful doping of Mn2-doped QDs.
Abstract: All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, and I) quantum dots (QDs), possessing high photoluminescence quantum yields and tunable color output, have recently been endowed great promise for high-performance solar cells and light-emitting diodes (LEDs). Although moisture stability has been greatly improved through separating QDs with a SiO2 shell, the practical applications of CsPbX3 QDs are severely restricted by their poor thermal stability, which is associated with the intrinsically low formation energies of perovskite lattices. In this regard, enhancing the formation energies of perovskite lattices of CsPbX3 QDs holds great promise in getting to the root of their poor thermal stability, which hitherto remains untouched. Herein, we demonstrate an effective strategy through Mn2+ substitution to fundamentally stabilize perovskite lattices of CsPbX3 QDs even at high temperatures up to 200 °C under ambient air conditions. We employ first-principle calculations to confirm that the signi...

631 citations

Journal ArticleDOI
TL;DR: This review links metal halide perovskites' performance as efficient light emitters with their underlying materials electronic and photophysical attributes.
Abstract: Next-generation displays and lighting technologies require efficient optical sources that combine brightness, color purity, stability, substrate flexibility. Metal halide perovskites have potential use in a wide range of applications, for they possess excellent charge transport, bandgap tunability and, in the most promising recent optical source materials, intense and efficient luminescence. This review links metal halide perovskites' performance as efficient light emitters with their underlying materials electronic and photophysical attributes.

542 citations

Journal ArticleDOI
TL;DR: Doping of lead halide perovskites (LHPs) with the targeted impurities has emerged as an additional lever, a dimension beyond structural perfection and compositional distinction, for the alteration as mentioned in this paper.
Abstract: Doping of lead halide perovskites (LHPs) with the targeted impurities has emerged as an additional lever, a dimension beyond structural perfection and compositional distinction, for the alteration

416 citations

Journal ArticleDOI
TL;DR: In this article, a detailed review of the physical and chemical properties of exposed HaP thin film and crystal surfaces is presented, including topics such as surface termination, surface reactivity, and electronic structure, and experimental results on the energetic alignment processes at the interfaces between the HaP and transport and buffer layers.
Abstract: Design and modification of interfaces, always a critical issue for semiconductor devices, has become a primary tool to harness the full potential of halide perovskite (HaP)-based optoelectronics, including photovoltaics and light-emitting diodes. In particular, the outstanding improvements in HaP solar cell performance and stability can be primarily ascribed to a careful choice of the interfacial layout in the layer stack. In this review, we describe the unique challenges and opportunities of these approaches (section 1). For this purpose, we first elucidate the basic physical and chemical properties of the exposed HaP thin film and crystal surfaces, including topics such as surface termination, surface reactivity, and electronic structure (section 2). This is followed by discussing experimental results on the energetic alignment processes at the interfaces between the HaP and transport and buffer layers. This section includes understandings reached as well as commonly proposed and applied models, especia...

356 citations