scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons

TL;DR: An ultralarge pore titanium silicate with MCM-41 structure has been prepared by direct hydrothermal synthesis; this material gives rise to useful catalysts for the selective oxidation of small and large organic compounds.
Abstract: An ultralarge pore titanium silicate with MCM-41 structure has been prepared by direct hydrothermal synthesis; this material gives rise to useful catalysts for the selective oxidation of small and large organic compounds.
Citations
More filters
Journal ArticleDOI
TL;DR: Corma et al. as mentioned in this paper used the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) on technology research (1996), to recognize the performance of zeolites as catalysts for oil refining and petrochemistry.
Abstract: It is possible to say that zeolites are the most widely used catalysts in industry They are crystalline microporous materials which have become extremely successful as catalysts for oil refining, petrochemistry, and organic synthesis in the production of fine and speciality chemicals, particularly when dealing with molecules having kinetic diameters below 10 A The reason for their success in catalysis is related to the following specific features of these materials:1 (1) They have very high surface area and adsorption capacity (2) The adsorption properties of the zeolites can be controlled, and they can be varied from hydrophobic to hydrophilic type materials (3) Active sites, such as acid sites for instance, can be generated in the framework and their strength and concentration can be tailored for a particular application (4) The sizes of their channels and cavities are in the range typical for many molecules of interest (5-12 A), and the strong electric fields2 existing in those micropores together with an electronic confinement of the guest molecules3 are responsible for a preactivation of the reactants (5) Their intricate channel structure allows the zeolites to present different types of shape selectivity, ie, product, reactant, and transition state, which can be used to direct a given catalytic reaction toward the desired product avoiding undesired side reactions (6) All of these properties of zeolites, which are of paramount importance in catalysis and make them attractive choices for the types of processes listed above, are ultimately dependent on the thermal and hydrothermal stability of these materials In the case of zeolites, they can be activated to produce very stable materials not just resistant to heat and steam but also to chemical attacks Avelino Corma Canos was born in Moncofar, Spain, in 1951 He studied chemistry at the Universidad de Valencia (1967−1973) and received his PhD at the Universidad Complutense de Madrid in 1976 He became director of the Instituto de Tecnologia Quimica (UPV-CSIC) at the Universidad Politecnica de Valencia in 1990 His current research field is zeolites as catalysts, covering aspects of synthesis, characterization and reactivity in acid−base and redox catalysis A Corma has written about 250 articles on these subjects in international journals, three books, and a number of reviews and book chapters He is a member of the Editorial Board of Zeolites, Catalysis Review Science and Engineering, Catalysis Letters, Applied Catalysis, Journal of Molecular Catalysis, Research Trends, CaTTech, and Journal of the Chemical Society, Chemical Communications A Corma is coauthor of 20 patents, five of them being for commercial applications He has been awarded with the Dupont Award on new materials (1995), and the Spanish National Award “Leonardo Torres Quevedo” on Technology Research (1996) 2373 Chem Rev 1997, 97, 2373−2419

5,290 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the preparation of ordered mesoporous catalysts is presented, and the essential properties of the resulting materials are described in the first part of this review.

1,994 citations

Journal ArticleDOI
TL;DR: In this article, the molecular shapes of covalent organosilanes, quaternary ammonium surfactants, and mixed surfactant in various reaction conditions can be used to synthesize silica-based mesophase configurations.
Abstract: The low-temperature formation of liquid-crystal-like arrays made up of molecular complexes formed between molecular inorganic species and amphiphilic organic molecules is a convenient approach for the synthesis of mesostructure materials. This paper examines how the molecular shapes of covalent organosilanes, quaternary ammonium surfactants, and mixed surfactants in various reaction conditions can be used to synthesize silica-based mesophase configurations, MCM-41 (2d hexagonal, p6m), MCM-48 (cubic Ia3d), MCM-50 (lamellar), SBA-1 (cubic Pm3n), SBA-2 (3d hexagonal P63/mmc), and SBA-3 (hexagonal p6m from acidic synthesis media). The structural function of surfactants in mesophase formation can to a first approximation be related to that of classical surfactants in water or other solvents with parallel roles for organic additives. The effective surfactant ion pair packing parameter, g = V/a0l, remains a useful molecular structure-directing index to characterize the geometry of the mesophase products, and pha...

1,428 citations

References
More filters
Journal ArticleDOI
22 Oct 1992-Nature
TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Abstract: MICROPOROUS and mesoporous inorganic solids (with pore diameters of ≤20 A and ∼20–500 A respectively)1 have found great utility as catalysts and sorption media because of their large internal surface area. Typical microporous materials are the crystalline framework solids, such as zeolites2, but the largest pore dimensions found so far are ∼10–12 A for some metallophosphates3–5 and ∼14 A for the mineral cacoxenite6. Examples of mesoporous solids include silicas7 and modified layered materials8–11, but these are invariably amorphous or paracrystalline, with pores that are irregularly spaced and broadly distributed in size8,12. Pore size can be controlled by intercalation of layered silicates with a surfactant species9,13, but the final product retains, in part, the layered nature of the precursor material. Here we report the synthesis of mesoporous solids from the calcination of aluminosilicate gels in the presence of surfactants. The material14,15 possesses regular arrays of uniform channels, the dimensions of which can be tailored (in the range 16 A to 100 A or more) through the choice of surfactant, auxiliary chemicals and reaction conditions. We propose that the formation of these materials takes place by means of a liquid-crystal 'templating' mechanism, in which the silicate material forms inorganic walls between ordered surfactant micelles.

15,125 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described.
Abstract: The synthesis, characterization, and proposed mechanism of formation of a new family of silicatelaluminosilicate mesoporous molecular sieves designated as M41S is described. MCM-41, one member of this family, exhibits a hexagonal arrangement of uniform mesopores whose dimensions may be engineered in the range of - 15 A to greater than 100 A. Other members of this family, including a material exhibiting cubic symmetry, have ken synthesized. The larger pore M41S materials typically have surface areas above 700 m2/g and hydrocarbon sorption capacities of 0.7 cc/g and greater. A templating mechanism (liquid crystal templating-LCT) in which surfactant liquid crystal structures serve as organic templates is proposed for the formation of these materials. In support of this templating mechanism, it was demonstrated that the structure and pore dimensions of MCM-41 materials are intimately linked to the properties of the surfactant, including surfactant chain length and solution chemistry. The presence of variable pore size MCM-41, cubic material, and other phases indicates that M41S is an extensive family of materials.

10,349 citations

Journal ArticleDOI
01 Jan 1990-Nature
TL;DR: In this paper, it was shown that titanium silicalite, a microporous crystalline Ti-silica, is able to activate secondary and tertiary carbon atoms in alkanes, so that they may be oxidized to alcohols and subsequently to ketones using aqueous H2O2.
Abstract: BECAUSE of the chemical inertness of alkanes, the introduction of functional groups into them by oxidation has tended to require severe and thus unselective conditions. The homogeneous and heterogeneous catalysts used for alkene oxidation are ineffective for alkanes1,2. Cleavage of carbon–carbon bonds in the presence of transition metal complexes effects mainly complete oxidation to acids2, although some selectivity is occasionally possible3. Oxyfunctionalization without C–C bond cleavage has also been achieved2,4,5, and high selectivity may be obtained from natural or synthetic metalloporphyrin systems6,7. Here we show that titanium silicalite, a microporous crystalline Ti-silica8, is able to activate secondary and tertiary carbon atoms in alkanes, so that they may be oxidized to alcohols and subsequently to ketones using aqueous H2O2. The catalyst has low regioselectivity for alcohol formation but high reactant selectivity in the formation of ketones.

401 citations

Journal ArticleDOI
TL;DR: The properties of titanium silicalite (TS-1) in reactions with water, hydrogen peroxide, and alcohol molecules have been studied by means of IR and NMR spectroscopy, and acid activity tests.

340 citations

Journal ArticleDOI
TL;DR: In this article, the most important spectroscopic features in the UV-Vis of framework and extra-framework Ti(IV) in titanium silicalite are summarized and the formation of EPR active species is also considered.
Abstract: The most important spectroscopic features in the UV-Vis of framework and extraframework Ti(IV) in titanium silicalite are briefly summarized. The spectroscopic manifestations of the complexes formed by framework Ti(IV) in presence of H2O2 are reported. The formation of EPR active species is also considered.

334 citations