scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthesis of new high-entropy alloy-type Nb3 (Al, Sn, Ge, Ga, Si) superconductors

TL;DR: In this article, the authors synthesized polycrystalline samples of A15-type superconductors of Nb3Al0.2Sn0.3Sn 0.3Ge0.1Si 0.2Ni 0.1Ni 0.
About: This article is published in Journal of Alloys and Compounds.The article was published on 2021-07-05 and is currently open access. It has received 2 citations till now. The article focuses on the topics: Superconductivity & Debye model.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a broadening of specific heat jump near a superconducting transition tempreature (Tc) in transition-metal zirconides (TrZr2) with different mixing entropy (ΔSmix) at the Tr site is reported.
Abstract: A high-entropy-alloy-type (HEA-type) superconductor is new category of highly disordered superconductors. Therefore, finding brand-new superconducting characteristics in the HEA-type superconductors would open new avenue to investigate the relationship between structural disorder and superconductivity. Here, we report on the remarkable broadening of specific heat jump near a superconducting transition tempreature (Tc) in transition-metal zirconides (TrZr2) with different mixing entropy (ΔSmix) at the Tr site. With increasing ΔSmix, the superconducting transition seen in specific heat became broader, whereas those seen in magnetization were commonly sharp. Therefore the broadening of specific heat jump would be related to the microscopic inhomogeneity of the formation of Cooper pairs behind the emergence of bulk superconductivity states.

7 citations

Posted Content
TL;DR: In this article, the authors investigated the effects of high-entropy alloying at the rare earth site on the superconducting properties, through the measurements of local (intra-grain) Jc (Jclocal) by a remanent magnetization method and found that Jclocal shows a trend to be improved when four or five rare earth elements are solved at the RE site, which results in high configurational entropy of mixing (delta_Smix).
Abstract: REBa2Cu3O7-d (RE123, RE: rare earth) is one of the high-temperature superconductors with a transition temperature (Tc) exceeding 90 K. Because of its high Tc and large critical current density (Jc) under magnetic fields, RE123 superconductors have been expected to play a key role in superconductivity application. To accelerate application researches on RE123-based devices, further improvements of Jc characteristics have been desired. In this study, we investigated the effects of high-entropy alloying at the RE site on the superconducting properties, through the measurements of local (intra-grain) Jc (Jclocal) by a remanent magnetization method. We found that Jclocal shows a trend to be improved when four or five RE elements are solved at the RE site, which results in high configurational entropy of mixing (delta_Smix). Because high-entropy alloying can improve Jclocal of RE123 superconductors by modification of the RE site composition and delta_Smix, and the technique would be applicable together with other techniques, such as introduction of nanoscale disorders, our entropy-engineering strategy introduced here would be useful for development of RE123 superconducting materials available under high magnetic fields.
References
More filters
Journal ArticleDOI
TL;DR: In this article, a theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, and it is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction.
Abstract: A theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, $\ensuremath{\hbar}\ensuremath{\omega}$. It is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction. The normal phase is described by the Bloch individual-particle model. The ground state of a superconductor, formed from a linear combination of normal state configurations in which electrons are virtually excited in pairs of opposite spin and momentum, is lower in energy than the normal state by amount proportional to an average ${(\ensuremath{\hbar}\ensuremath{\omega})}^{2}$, consistent with the isotope effect. A mutually orthogonal set of excited states in one-to-one correspondence with those of the normal phase is obtained by specifying occupation of certain Bloch states and by using the rest to form a linear combination of virtual pair configurations. The theory yields a second-order phase transition and a Meissner effect in the form suggested by Pippard. Calculated values of specific heats and penetration depths and their temperature variation are in good agreement with experiment. There is an energy gap for individual-particle excitations which decreases from about $3.5k{T}_{c}$ at $T=0\ifmmode^\circ\else\textdegree\fi{}$K to zero at ${T}_{c}$. Tables of matrix elements of single-particle operators between the excited-state superconducting wave functions, useful for perturbation expansions and calculations of transition probabilities, are given.

9,619 citations

Journal ArticleDOI
TL;DR: A new approach for the design of alloys is presented in this paper, where high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies.
Abstract: A new approach for the design of alloys is presented in this study. These high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies. Preliminary results demonstrate examples of the alloys with simple crystal structures, nanostructures, and promising mechanical properties. This approach may be opening a new era in materials science and engineering.

8,175 citations

Journal ArticleDOI
TL;DR: VESTA as mentioned in this paper is a cross-platform program for visualizing both structural and volumetric data in multiple windows with tabs, including isosurfaces, bird's-eye views and two-dimensional maps.
Abstract: A cross-platform program, VESTA, has been developed to visualize both structural and volumetric data in multiple windows with tabs. VESTA represents crystal structures by ball-and-stick, space-filling, polyhedral, wireframe, stick, dot-surface and thermal-ellipsoid models. A variety of crystal-chemical information is extractable from fractional coordinates, occupancies and oxidation states of sites. Volumetric data such as electron and nuclear densities, Patterson functions, and wavefunctions are displayed as isosurfaces, bird's-eye views and two-dimensional maps. Isosurfaces can be colored according to other physical quantities. Translucent isosurfaces and/or slices can be overlapped with a structural model. Collaboration with external programs enables the user to locate bonds and bond angles in the `graphics area', simulate powder diffraction patterns, and calculate site potentials and Madelung energies. Electron densities determined experimentally are convertible into their Laplacians and electronic energy densities.

4,172 citations

Journal ArticleDOI
TL;DR: In this paper, a solution of the linearized Gor'kov equations for the upper critical magnetic field of a bulk type-II superconductor is extended to include the effects of Pauli spin paramagnetism and spin-orbit impurity scattering.
Abstract: A previously obtained solution of the linearized Gor'kov equations for the upper critical magnetic field ${H}_{c2}$ of a bulk type-II superconductor is extended to include the effects of Pauli spin paramagnetism and spin-orbit impurity scattering. To carry out the calculation, it is necessary to introduce an approximation which assumes that spin-orbit scattering is infrequent in comparison with spin-independent scattering. It is found that spin-orbit scattering counteracts the effects of the spin paramagnetism in limiting the critical field and improves agreement between theory and experiment.

2,474 citations

Journal ArticleDOI
TL;DR: A new three-dimensional visualization system, VESTA, is developed, using wxWidgets as a C++ application framework, which excels in visualization, rendering, and manipulation of crystal structures and electron/nuclear densities determined by X-ray/ neutron diffraction and electronic-structure calculations.
Abstract: A multi-purpose pattern-fitting system, RIETAN-2000, has been extensively utilized to contribute to many structural studies. It offers a sophisticated structure-refinement technique of whole-pattern fitting based on the maximum-entropy method (MEM) in combination with a MEM analysis program PRIMA. We have recently completed a successor system, RIETAN-FP, to RIETAN-2000, adding new features such as standardization of crystal-structure data, an extended March-Dollase preferred-orientation function, and automation of imposing restraints on bond lengths and angles. Further, we have been developing a new three-dimensional visualization system, VESTA, using wxWidgets as a C++ application framework. VESTA excels in visualization, rendering, and manipulation of crystal structures and electron/nuclear densities determined by X-ray/ neutron diffraction and electronic-structure calculations. VESTA also enables us to display wave functions and electrostatic potentials calculated with part of these programs.

2,238 citations