scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthesis, stability, and (de)hydrogenation catalysis by normal and abnormal alkene- and picolyl-tethered NHC ruthenium complexes

21 Jun 2019-Organometallics (American Chemical Society)-Vol. 38, Iss: 13, pp 2624-2635
TL;DR: A series of p-cymene and cyclopentadienyl Ru(II)-aNHC complexes were synthesized from 2-methylimidazolium salts with either an N-bound alkenyl (1, 3) or picolyl tether (6, 7) as mentioned in this paper.
About: This article is published in Organometallics.The article was published on 2019-06-21 and is currently open access. It has received 20 citations till now. The article focuses on the topics: Cyclopentadienyl complex & Ruthenium.

Summary (1 min read)

Introduction

  • N-heterocyclic carbenes (NHCs) have the ability to exhibit both innocent and non-innocent behavior in metal-mediated transformation reactions.
  • 4,5(a) However, the formation of C(4)-bound aNHCs via transmetallation of the corresponding Ag-aNHC intermediate is generally limited because of redox reactions of the imidazolium salt with the strong oxidant Ag2O.3.
  • The need for more facile routes to access these desirable aNHCs remains relevant, as the rational preparation of aNHC metal complexes continues to be a synthetic challenge.
  • Abnormal coordination selectivity has also been related to steric control imparted by the tether length and the bite angle, as well as to the nature of the anion of the aNHC precursor.
  • Here the authors report the synthesis of eight new abnormally bound NHC half-sandwich Ru(II) complexes and demonstrate the strong binding of these aNHC ligands through acid stability studies.

Results and Discussion

  • Formation of the C(2)-isopropyl functionalized Ru(II)-aNHC complexes 9 and 10, also known as 10   Scheme 4.
  • Nonetheless, complexes 1 and 3 performed considerably better than the precursor salts (entries 9,10), revealing a direct impact of the tethered aNHC ligand on the catalytic activity.
  • Conversions were lower with substrates containing electron-withdrawing groups such as 4'-chloroand 4'-nitro-acetophenone (entries 2, 3).

Conclusions

  • Variation of the arene ligand (p-cymene vs. cyclopentadienyl) and of the chelating tether of aNHC ligands (alkenyl vs. picolyl) provided access to six unique half-sandwich aNHC Ru(II) complexes.
  • In addition, Ag-mediated C(2)-demethylation resulted in the identification of two normally-bound NHC Ru(II) side-products.
  • Symmetrization of the N-alkene substituents of the aNHC ligand, as well as employing an iPr-group on the C(2)-position of the imidazolium precursor, prevented C(2)dealkylation and allowed for the selective C(4)-ruthenation for both the p-cymene and cyclopentadienyl Ru(II) precursors.
  • Preliminary catalytic studies involving transfer hydrogenation suggest a greater impact of vacant coordination sites available via halide substitution (p-cymene Ru(II) complexes) than via reversible alkene and/or phosphine dissociation (cyclopentadienyl Ru(II) complexes).
  • The transfer hydrogenation results indicate that chelating aNHC ligand systems provide a dynamic platform for the development of active, selective, and long-lived catalysts.

Did you find this useful? Give us your feedback

Citations
More filters
Journal ArticleDOI
TL;DR: A brief overview of recent advances on NHC-TM complexes for dehydrogenative catalysis using alcohols can be found in this article, where N-heterocyclic carbenes (NHCs) are green and versatile ligands for the development of transition metal catalysts.

24 citations

Journal ArticleDOI
TL;DR: Palladium complexes bearing abnormal imidazo[1,5-a]pyridine (aImPy)-based N-heterocyclic carbene ligands were developed for the homopolymerization of olefins and the copolymerisation of OLEFins as discussed by the authors.
Abstract: Palladium complexes bearing abnormal imidazo[1,5-a]pyridine (aImPy)-based N-heterocyclic carbene ligands were developed for the homopolymerization of olefins and the copolymerization of olefins and...

19 citations

Journal ArticleDOI
TL;DR: A series of simple and electronically tuneable cyclometalated Ru II -NHC complexes have been explored as efficient catalysts for various C-C/N bond forming reactions via a BH methodology as mentioned in this paper .

11 citations

Journal ArticleDOI
TL;DR: In this paper, the catalytic activities of a series of simple and electronically tuneable cyclometalated RuII-NHC complexes (2a-d) were explored in various C-C/N bond formations following the borrowing hydrogen process.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an aluminium filter approximately 100µm thick was proposed to remove the low-energy contaminant photons, which can significantly reduce the accuracy of the measured intensities, especially when Mo'kα radiation is used.
Abstract: In recent years, microsource sealed tubes in combination with multilayer optics have been adopted in many crystallography laboratories for very low power X-ray generation, monochromatization and high-brilliance microfocusing. All these factors allow high-performance experiments on a laboratory scale. However, a fundamental defect of this technology has been discovered, namely a significant contamination of the characteristic radiation by low-energy photons. Some simple experiments are reported, showing that the contamination can significantly reduce the accuracy of the measured intensities, especially when Mo Kα radiation is used. A simple and economic solution to the problem is proposed: an aluminium filter approximately 100 µm thick, which efficiently removes the low-energy contaminant photons.

62 citations

Journal ArticleDOI
TL;DR: Mechanistic investigations using deuterated silane revealed deuterium incorporation into the abnormal carbene ligand and thus suggests a ligand-assisted mechanism involving heterolytic Si-H bond cleavage, suggesting a mild route towards the protection of alcohols with H(2) as the only by-product.
Abstract: Rhodium(III) complexes comprising monoanionic C,C,C-tridentate dicarbene ligands activate Si-H bonds and catalyse the hydrolysis of hydrosilanes to form silanols and siloxanes with concomitant release of H(2). In dry MeNO(2), selective formation of siloxanes takes place, while changing conditions to wet THF produces silanols exclusively. Silyl ethers are formed when ROH is used as substrate, thus providing a mild route towards the protection of alcohols with H(2) as the only by-product. With alkynes, comparably fast hydrosilylation takes place, while carbonyl groups are unaffected. Further expansion of the Si-H bond activation to dihydrosilanes afforded silicones and polysilyl ethers. Mechanistic investigations using deuterated silane revealed deuterium incorporation into the abnormal carbene ligand and thus suggests a ligand-assisted mechanism involving heterolytic Si-H bond cleavage.

56 citations

Journal ArticleDOI
TL;DR: In this paper, the bifunctional phosphine-abnormal N-heterocyclic carbene ruthenium(II) complex RuBr(OAc)(PPh3)(P-aNHC) (1) has been synthesized in high yield by reaction of Ru (OAc)2(PPh 3)2 with a phosphine imidazolium bromide (P-NHC × HBr) and characterized by X-ray diffraction.

54 citations

Journal ArticleDOI
TL;DR: The high stability of the Ir-C bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation.
Abstract: Metalation of a C2-methylated pyridylimidazolium salt with [IrCp*Cl2]2 affords either an ylidic complex, resulting from C(sp3)H bond activation of the C2-bound CH3 group if the metalation is performed in the presence of a base, such as AgO2 or Na2CO3, or a mesoionic complex via cyclometalation and thermally induced heterocyclic C(sp2)H bond activation, if the reaction is performed in the absence of a base. Similar cyclometalation and complex formation via C(sp2)H bond activation is observed when the heterocyclic ligand precursor consists of the analogous pyridyltriazolium salt, that is, when the metal bonding at the C2 position is blocked by a nitrogen rather than a methyl substituent. Despite the strongly mesoionic character of both the imidazolylidene and the triazolylidene, the former reacts rapidly with D+ and undergoes isotope exchange at the heterocyclic C5 position, whereas the triazolylidene ligand is stable and only undergoes H/D exchange under basic conditions, where the imidazolylidene is essentially unreactive. The high stability of the IrC bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation. The catalytic hydrosilylation of ketones proceeds with turnover frequencies as high as 6 000 h−1 with both the imidazolylidene and the triazolylidene system, whereas water oxidation is enhanced by the stronger donor properties of the imidazol-4-ylidene ligands and is more than three times faster than with the triazolylidene analogue.

46 citations

Journal ArticleDOI
TL;DR: In this article, the N-substituents of a bis-NHC ligand from n-butyl to bulky mesityl wingtip groups were used to shift ligand coordination from normal/normal to normal/abnormal mode.

43 citations

Frequently Asked Questions (1)
Q1. What contributions have the authors mentioned in the paper "Synthesis, stability, and (de)hydrogenation catalysis by normal and abnormal alkene- and picolyl-tethered nhc ruthenium complexes" ?

In this paper, a series of p-cymene and cyclopentadienyl Ru ( II ) -aNHC derivatives have been synthesized from 2methylimidazolium salts with either an N-bound alkenyl ( 1, 3 ) or picolyl tether ( 6, 7 ).