scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthesizing Aperture Fields Over the Superstrate of Resonance Cavity Antenna for Modifying Its Radiation Properties

TL;DR: In this article, a new approach of aperture field synthesis over the superstrate has been proposed to improve the radiation characteristics of a resonance cavity antenna (RCA) with the aim of reducing the sidelobe level (SLL) and increasing the gain.
Abstract: Modification and improvement in the radiation characteristics of a resonance cavity antenna (RCA) have been addressed from a new approach of aperture field synthesis over the superstrate. This concept has been established through a series of systematic studies, which are based on the exciting observations reported very recently by these authors. A process of modification or engineering on the superstrate has been conjectured in view of obtaining reduced sidelobe level (SLL) and/or increased gain. The same has been successfully designed and experimentally demonstrated indicating as much as 10 dB suppression in SLL along with 3 dB improvement in gain compared to its nearest contender. This study promises a potential technique in RCA design along with several attractive features.
Citations
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, the authors presented a design methodology for a compact low-cost partially reflecting surface (PRS) for a wideband high-gain resonant cavity antenna (RCA) which requires only a single commercial dielectric slab.
Abstract: This communication presents a design methodology for a compact low-cost partially reflecting surface (PRS) for a wideband high-gain resonant cavity antenna (RCA) which requires only a single commercial dielectric slab. The PRS has one nonuniform double-sided printed dielectric, which exhibits a negative transverse-reflection magnitude gradient and, at the same time, a progressive reflection phase gradient over frequency. In addition, a partially shielded cavity is proposed as a method to optimize the directivity bandwidth and the peak directivity of RCAs. A prototype of the PRS was fabricated and tested with a partially shielded cavity, showing good agreement between the predicted and measured results. The measured peak directivity of the antenna is 16.2 dBi at 11.4 GHz with a 3 dB bandwidth of 22%. The measured peak gain and 3 dB gain bandwidth are 15.75 dBi and 21.5%, respectively. The PRS has a radius of 29.25 mm ( $1.1\lambda _{0}$ ) with a thickness of 1.52 mm ( $0.12\lambda _{g}$ ), and the overall height of the antenna is $0.6\lambda _{0} $ , where $\lambda _{0}$ and $\lambda _{g}$ are the free-space and guided wavelengths at the center frequency of 11.4 GHz.

55 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, an approach to correcting electric near-field phase and magnitude over a wideband for Fabry-Perot resonator antennas (FPRAs) is presented, where a time-average Poynting vector in conjunction with a phase gradient analysis is utilized to suggest the initial configuration of the NFCS for wideband performance.
Abstract: A systematic approach to correcting electric near-field phase and magnitude over a wideband for Fabry–Perot resonator antennas (FPRAs) is presented. Unlike all other unit-cell-based near-field correction techniques for FPRAs, which merely focus on phase correction at a single frequency, this method delivers a compact near-field correcting structure (NFCS) with a wide operational bandwidth of 40%. In this novel approach, a time-average Poynting vector in conjunction with a phase gradient analysis is utilized to suggest the initial configuration of the NFCS for wideband performance. A simulation-driven optimization algorithm is then implemented to find the thickness of each correcting region, defined by the gradient analysis, to complete the NFCS design. According to the predicted and measured results, the phase and magnitude distributions of the electric near field have been greatly improved, resulting in a high aperture efficiency of 70%. The antenna under NFCS loading has a peak measured directivity of 21.6 dB, a 3 dB directivity bandwidth of 41% and a 10 dB return loss bandwidth of 46%, which covers the directivity bandwidth. The diameter of the proposed NFCS is $3.8\lambda _{0c}$ , which is around half that of all the other unit-cell-based phase-correcting structures, where $\lambda _{0c}$ is the free-space wavelength at the central frequency of the NFCS (13.09 GHz).

50 citations


Cites methods from "Synthesizing Aperture Fields Over t..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this paper, a hybrid topology of fully metallic spatial phase shifters is developed for the AMPCS, resulting in an extremely lower prototyping cost as that of other state-of-the-art substrate-based PCSs.
Abstract: This article addresses a critical issue, which has been overlooked, in relation to the design of phase-correcting structures (PCSs) for electromagnetic bandgap (EBG) resonator antennas (ERAs). All the previously proposed PCSs for ERAs are made using either several expensive radio frequency (RF) dielectric laminates or thick and heavy dielectric materials, contributing to very high fabrication cost, posing an industrial impediment to the application of ERAs. This article presents a new industrial-friendly generation of PCS, in which dielectrics, known as the main cause of high manufacturing cost, are removed from the PCS configuration, introducing an all-metallic PCS (AMPCS). Unlike existing PCSs, a hybrid topology of fully metallic spatial phase shifters are developed for the AMPCS, resulting in an extremely lower prototyping cost as that of other state-of-the-art substrate-based PCSs. The APMCS was fabricated using laser technology and tested with an ERA to verify its predicted performance. The results show that the phase uniformity of the ERA aperture has been remarkably improved, resulting in 8.4 dB improvement in the peak gain of the antenna and improved sidelobe levels (SLLs). The antenna system including APMCS has a peak gain of 19.42 dB with a 1 dB gain bandwidth of around 6%.

37 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a double-layer non-uniform superstrate (DNS) was proposed to improve the aperture efficiency of the Fabry-Perot resonator antenna.
Abstract: Due to the nonuniform electromagnetic (EM) field amplitude distribution over its aperture, the Fabry–Perot resonator antenna (FPRA) suffers from relatively low aperture efficiency. In this communication, an FPRA with high aperture efficiency is proposed based on a double-layer nonuniform superstrate (DNS). The DNS is designed to have a constant reflection phase but a varying reflection magnitude, thereby obtaining a uniform EM field amplitude distribution over the FPRA’s aperture and, hence improving the directivity and the corresponding aperture efficiency. As an example, a cylindrical FPRA with an aperture diameter of $3.5~\lambda $ (where $\lambda $ is the wavelength in free space) is presented. In comparison with a uniform superstrate, the proposed DNS enhances the FPRA’s directivity from 19.6 to 20.4 dBi and correspondingly improves the aperture efficiency from 76.3% to 91.7%.

22 citations


Cites background from "Synthesizing Aperture Fields Over t..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: The AMPS has remarkably improved the radiation performance of ERA by increasing its far-field directivity from 12.67 dB to 21.12 dB and reducing side-lobe level from −7.3 dB to −17.2 dB.
Abstract: Additively manufactured perforated superstrate (AMPS) is presented to realize directive radio frequency (RF) front-end antennas. The superstrate comprises spatially distributed dielectric unit-cell elements with square perforations, which creates a pre-defined transmission phase delay pattern in the propagating electric field. The proposed square perforation has superior transmission phase characteristics compared to traditionally machined circular perforations and full-wave simulations based parametric analysis has been performed to highlight this supremacy. The AMPS is used with a classical electromagnetic-bandgap resonator antenna (ERA) to improve its directive radiation characteristics. A prototype is developed using the most common, low-cost and easily accessible Acrylonitrile Butadiene Styrene (ABS) filament. The prototype was rapidly fabricated in less than five hours and weighs 139.3 g., which corresponds to the material cost of only 2.1 USD. The AMPS has remarkably improved the radiation performance of ERA by increasing its far-field directivity from 12.67 dB to 21.12 dB and reducing side-lobe level from -7.3 dB to -17.2 dB.

21 citations


Cites methods from "Synthesizing Aperture Fields Over t..."

  • [...]

References
More filters
Book

[...]

01 Dec 1950
TL;DR: In this article, Lehto and Vainikainen discuss the relationship between aperture distribution and far-field pattern and the Fourier Transform Relation between Aperture Distribution and Far-Field Pattern.
Abstract: 1 Introduction 2 Antenna Basics 3 The Antenna Family 4 Point Sources 5 Arrays of Point Sources 6 The Electric Dipole and Thin Linear Antennas 7 The Loop Antenna 8 End Fire Antennas: The Helical Beam Antenna and the Yagi-Uda Array 9 Slot, Patch and Horn Antennas 9II Slot and Horn Antennas II 10 Flat Sheet, Corner and Parabolic Reflector Antennas 11 Broadband and Frequency-Independent Antennas 12 Antenna Temperature, Remote Sensing and Radar Cross-Section 13 Self and Mutual Impedances 14 The Cylindrical Antenna and the Moment Method (MM) 15 The Fourier Transform Relation Between Aperture Distribution and Far-Field Pattern 16 Arrays of Dipoles and of Apertures 17 Lens Antennas 18 Frequency-Selective Surfaces and Periodic Structures by Ben A. Munk 19 Practical Design Considerations of Large Aperture Antennas 20 Some Examples of Large or Unique Antennas 21 Antennas for Special Applications 22 Terahertz Antennas 23 Baluns, etc. By Ben A. Munk 24 Antenna Measurements. By Arto Lehto and Pertti Vainikainen Appendix A Tables for Reference Appendix B Books and Video Tapes Appendix C Computer Programs (Codes) Appendix D Absorbing Materials Appendix E Measurement Error

1,072 citations


"Synthesizing Aperture Fields Over t..." refers background or methods in this paper

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this article, a ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines, and the bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated.
Abstract: Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.

814 citations

Journal ArticleDOI

[...]

TL;DR: In this article, a leaky-wave analysis is used to explain the narrow-beam resonance gain phenomenon in which narrow beams may be produced from a printed antenna element in a substrate-superstrate geometry.
Abstract: A leaky-wave analysis is used to explain the narrow-beam resonance-gain phenomenon in which narrow beams may be produced from a printed antenna element in a substrate-superstrate geometry. It is demonstrated that the phenomenon is attributable to the presence of both transverse electric and transverse magnetic-mode leaky waves, that are excited on the structure. Asymptotic formulas for the leaky wave are compared with the exact patterns to demonstrate the dominant role of the leaky waves in determining the pattern. Results are presented as a function of frequency, the scan angle, and the permittivity of the superstrate. >

308 citations


"Synthesizing Aperture Fields Over t..." refers background in this paper

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: In this paper, two different defects, one introduced by the ground plane of the antenna and the other produced by a row of defect rods with different dielectric constants in the EBG structure, are simultaneously used as key controllers of directivity enhancement.
Abstract: We present some applications of an electromagnetic bandgap (EBG) superstrate as a spatial angular filter for filtering undesired radiation by sharpening the radiation pattern. Two different defects, one introduced by the ground plane of the antenna and the other produced by a row of defect rods with different dielectric constants in the EBG structure, are simultaneously used as key controllers of directivity enhancement. Initially, we study the unit cell of the EBG structures by varying several parameters, in order to understand how they influence the locations of the bandgap and defect frequencies. Next, the defect frequencies of the unit cell of the EBG cover, and those with high directivity for the EBG antenna composite, are compared to validate the proposed design scheme. Finally, we introduce some interesting applications of EBG superstrates for various types of patch antennas as spatial angular filters, such as a dual-band orthogonally-polarized antenna, a wide-band directive antenna, and an array antenna with grating lobes.

250 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a high-efficient and high-gain aperture coupled patch antenna with superstrate at 60 GHz was studied and presented, and it was shown that adding superstrate will result in a significant effect on the antenna performances, and the size of the superstrate is critical for the optimum performance.
Abstract: A high-efficient and high-gain aperture coupled patch antenna with superstrate at 60 GHz is studied and presented. It is noted that adding superstrate will result in a significant effect on the antenna performances, and the size of the superstrate is critical for the optimum performance. The maximum measured gain of a single antenna with superstrate is 14.6 dBi, which is higher than that of a classical 2 x 2 array. It is found that the gain measured of a single antenna with superstrate increases nearly 9 dB at 60 GHz over its basic patch antenna. This superstrate antenna gives a very high estimated efficiency of 76%. The 2:1 measured VSWR bandwidth with superstrate is 6.8%. The radiation patterns are found to be broadside all over the frequency band. Also, this letter explains a comparison to another source of parasitic patch superstrate antenna with normal microstrip coupling. It is found that aperture coupling is better for high-gain antenna applications.

152 citations