scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes

TL;DR: An artificial transfer hydrogenase, based on the incorporation of a biotinylated iridium-piano-stool complex in streptavidin, is shown to be fully compatible with a range of biocatalysts and enables the concurrent interplay with oxidative enzymes.
Abstract: Enzymatic catalysis and homogeneous catalysis offer complementary means to address synthetic challenges, both in chemistry and in biology. Despite its attractiveness, the implementation of concurrent cascade reactions that combine an organometallic catalyst with an enzyme has proven challenging because of the mutual inactivation of both catalysts. To address this, we show that incorporation of a d(6)-piano stool complex within a host protein affords an artificial transfer hydrogenase (ATHase) that is fully compatible with and complementary to natural enzymes, thus enabling efficient concurrent tandem catalysis. To illustrate the generality of the approach, the ATHase was combined with various NADH-, FAD- and haem-dependent enzymes, resulting in orthogonal redox cascades. Up to three enzymes were integrated in the cascade and combined with the ATHase with a view to achieving (i) a double stereoselective amine deracemization, (ii) a horseradish peroxidase-coupled readout of the transfer hydrogenase activity towards its genetic optimization, (iii) the formation of L-pipecolic acid from L-lysine and (iv) regeneration of NADH to promote a monooxygenase-catalysed oxyfunctionalization reaction.
Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal ArticleDOI
TL;DR: The intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class, which allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies.
Abstract: The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970’s. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000’s. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and ...

504 citations


Cites methods from "Synthetic cascades are enabled by c..."

  • ...ATHase [(5)-(Cp*)Ir(70)Cl] · Sav S112T is moderately (R)-selective (59 % ee) for imine 89.(263) The ATHase was combined with monoamineoxidase MAO-N which has very high selectivity for the oxidation of (S)-...

    [...]

  • ...Ward and coworkers applied the ATHase [(5)-(Cp*)Ir(70)Cl] · WT Sav to recycle NADH in a cascade with NADH-dependent hydroxybiphenyl monooxygenase (HbpA, Scheme 34).(263) In this reaction, hydroxybiphenyl 108 was converted to the corresponding catechol 109 with TON > 99 in the presence of O2 as oxidant....

    [...]

Journal ArticleDOI
TL;DR: This Review addresses advances over the past decade in catalytic reactions using water as a reaction medium by addressing the development of water-compatible catalysts and heterogeneous catalysts.
Abstract: Traditional organic synthesis relies heavily on organic solvents for a multitude of tasks, including dissolving the components and facilitating chemical reactions, because many reagents and reactive species are incompatible or immiscible with water. Given that they are used in vast quantities as compared to reactants, solvents have been the focus of environmental concerns. Along with reducing the environmental impact of organic synthesis, the use of water as a reaction medium also benefits chemical processes by simplifying operations, allowing mild reaction conditions, and sometimes delivering unforeseen reactivities and selectivities. After the “watershed” in organic synthesis revealed the importance of water, the development of water-compatible catalysts has flourished, triggering a quantum leap in water-centered organic synthesis. Given that organic compounds are typically practically insoluble in water, simple extractive workup can readily separate a water-soluble homogeneous catalyst as an aqueous so...

478 citations

Journal ArticleDOI
TL;DR: In this paper, a review of recent developments in organoiridium complexes is presented, including the development of half-sandwich pseudo-octahedral pentamethylcyclopentadienyl IrIII complexes with diamine ligands.
Abstract: ConspectusIridium is a relatively rare precious heavy metal, only slightly less dense than osmium. Researchers have long recognized the catalytic properties of square-planar IrI complexes, such as Crabtree’s hydrogenation catalyst, an organometallic complex with cyclooctadiene, phosphane, and pyridine ligands. More recently, chemists have developed half-sandwich pseudo-octahedral pentamethylcyclopentadienyl IrIII complexes containing diamine ligands that efficiently catalyze transfer hydrogenation reactions of ketones and aldehydes in water using H2 or formate as the hydrogen source. Although sometimes assumed to be chemically inert, the reactivity of low-spin 5d6 IrIII centers is highly dependent on the set of ligands. Cp* complexes with strong σ-donor C∧C-chelating ligands can even stabilize IrIV and catalyze the oxidation of water. In comparison with well developed Ir catalysts, Ir-based pharmaceuticals are still in their infancy. In this Account, we review recent developments in organoiridium complexe...

455 citations

Journal ArticleDOI
TL;DR: The review introduces a systematic classification of the cascades according to the number of enzymes in the linear sequence and differentiates between cascades involving exclusively enzymes and combinations of enzymes with non-natural catalysts or chemical steps.
Abstract: The review compiles artificial cascades involving enzymes with a focus on the last 10 years. A cascade is defined as the combination of at least two reaction steps in a single reaction vessel without isolation of the intermediates, whereby at least one step is catalyzed by an enzyme. Additionally, cascades performed in vivo and in vitro are discussed separately, whereby in vivo cascades are defined here as cascades relying on cofactor recycling by the metabolism or on a metabolite from the living organism. The review introduces a systematic classification of the cascades according to the number of enzymes in the linear sequence and differentiates between cascades involving exclusively enzymes and combinations of enzymes with non-natural catalysts or chemical steps. Since the number of examples involving two enzymes is predominant, the two enzyme cascades are further subdivided according to the number, order, and type of redox steps. Furthermore, this classification differentiates between cascades where al...

420 citations

References
More filters
Journal ArticleDOI
TL;DR: In all cases, enzyme engineering via immobilization techniques is perfectly compatible with other chemical or biological approaches to improve enzyme functions and the final success depend on the availability of a wide battery of immobilization protocols.

3,016 citations

Journal ArticleDOI
TL;DR: In this article, synthetic protein scaffolds bearing interaction domains from metazoan signaling proteins were used to spatially recruit metabolic enzymes in a designable manner, and the modularity of these domains enabled them to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex.
Abstract: Engineered metabolic pathways constructed from enzymes heterologous to the production host often suffer from flux imbalances, as they typically lack the regulatory mechanisms characteristic of natural metabolism. In an attempt to increase the effective concentration of each component of a pathway of interest, we built synthetic protein scaffolds that spatially recruit metabolic enzymes in a designable manner. Scaffolds bearing interaction domains from metazoan signaling proteins specifically accrue pathway enzymes tagged with their cognate peptide ligands. The natural modularity of these domains enabled us to optimize the stoichiometry of three mevalonate biosynthetic enzymes recruited to a synthetic complex and thereby achieve 77-fold improvement in product titer with low enzyme expression and reduced metabolic load. One of the same scaffolds was used to triple the yield of glucaric acid, despite high titers (0.5 g/l) without the synthetic complex. These strategies should prove generalizeable to other metabolic pathways and programmable for fine-tuning pathway flux.

1,132 citations

Journal ArticleDOI
TL;DR: This tutorial review focuses on the understanding of enzyme immobilisation, which can address the issue of enzymatic instability.
Abstract: Enzymes are versatile catalysts in the laboratory and on an industrial scale. To broaden their applicability in the laboratory and to ensure their (re)use in manufacturing the stability of enzymes can often require improvement. Immobilisation can address the issue of enzymatic instability. Immobilisation can also help to enable the employment of enzymes in different solvents, at extremes of pH and temperature and exceptionally high substrate concentrations. At the same time substrate-specificity, enantioselectivity and reactivity can be modified. However, most often the molecular and physical–chemical bases of these phenomena have not been elucidated yet. This tutorial review focuses on the understanding of enzyme immobilisation.

1,115 citations

Journal ArticleDOI
TL;DR: Improvements in current strategies for carrier-based immobilisation have been developed using hetero-functionalised supports that enhance the binding efficacy and stability through multipoint attachment, and promise to enhance the roles of immobilisation enzymes in industry, while opening the door for novel applications.
Abstract: Improvements in current strategies for carrier-based immobilisation have been developed using hetero-functionalised supports that enhance the binding efficacy and stability through multipoint attachment. New commercial resins (Sepabeads) exhibit improved protein binding capacity. Novel methods of enzyme self-immobilisation have been developed (CLEC, CLEA, Spherezyme), as well as carrier materials (Dendrispheres), encapsulation (PEI Microspheres), and entrapment. Apart from retention, recovery and stabilisation, other advantages to enzyme immobilisation have emerged, such as enhanced enzyme activity, modification of substrate selectivity and enantioselectivity, and multi-enzyme reactions. These advances promise to enhance the roles of immobilisation enzymes in industry, while opening the door for novel applications.

749 citations