scispace - formally typeset
Search or ask a question
Posted Content

Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition

TL;DR: This work presents a framework for the recognition of natural scene text that does not require any human-labelled data, and performs word recognition on the whole image holistically, departing from the character based recognition systems of the past.
Abstract: In this work we present a framework for the recognition of natural scene text. Our framework does not require any human-labelled data, and performs word recognition on the whole image holistically, departing from the character based recognition systems of the past. The deep neural network models at the centre of this framework are trained solely on data produced by a synthetic text generation engine -- synthetic data that is highly realistic and sufficient to replace real data, giving us infinite amounts of training data. This excess of data exposes new possibilities for word recognition models, and here we consider three models, each one "reading" words in a different way: via 90k-way dictionary encoding, character sequence encoding, and bag-of-N-grams encoding. In the scenarios of language based and completely unconstrained text recognition we greatly improve upon state-of-the-art performance on standard datasets, using our fast, simple machinery and requiring zero data-acquisition costs.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article
07 Dec 2015
TL;DR: This work introduces a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network, and can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps.
Abstract: Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner. In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network. This differentiable module can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimisation process. We show that the use of spatial transformers results in models which learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art performance on several benchmarks, and for a number of classes of transformations.

6,150 citations


Cites background or methods from "Synthetic Data and Artificial Neura..."

  • ...In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network....

    [...]

  • ...5....

    [...]

  • ...While we only explore feed-forward networks in this work, early experiments show spatial transformers to be powerful in recurrent models, and useful for tasks requiring the disentangling of object reference frames, as well as easily extendable to 3D transformations (see Appendix A.3)....

    [...]

Journal ArticleDOI
TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Abstract: Deep convolutional neural networks have performed remarkably well on many Computer Vision tasks. However, these networks are heavily reliant on big data to avoid overfitting. Overfitting refers to the phenomenon when a network learns a function with very high variance such as to perfectly model the training data. Unfortunately, many application domains do not have access to big data, such as medical image analysis. This survey focuses on Data Augmentation, a data-space solution to the problem of limited data. Data Augmentation encompasses a suite of techniques that enhance the size and quality of training datasets such that better Deep Learning models can be built using them. The image augmentation algorithms discussed in this survey include geometric transformations, color space augmentations, kernel filters, mixing images, random erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and meta-learning. The application of augmentation methods based on GANs are heavily covered in this survey. In addition to augmentation techniques, this paper will briefly discuss other characteristics of Data Augmentation such as test-time augmentation, resolution impact, final dataset size, and curriculum learning. This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing Data Augmentation. Readers will understand how Data Augmentation can improve the performance of their models and expand limited datasets to take advantage of the capabilities of big data.

5,782 citations


Cites background from "Synthetic Data and Artificial Neura..."

  • ...[124] train exclusively with synthetic data for natural scene text recognition....

    [...]

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed a novel neural network architecture, which integrates feature extraction, sequence modeling and transcription into a unified framework, and achieved remarkable performances in both lexicon free and lexicon-based scene text recognition tasks.
Abstract: Image-based sequence recognition has been a long-standing research topic in computer vision. In this paper, we investigate the problem of scene text recognition, which is among the most important and challenging tasks in image-based sequence recognition. A novel neural network architecture, which integrates feature extraction, sequence modeling and transcription into a unified framework, is proposed. Compared with previous systems for scene text recognition, the proposed architecture possesses four distinctive properties: (1) It is end-to-end trainable, in contrast to most of the existing algorithms whose components are separately trained and tuned. (2) It naturally handles sequences in arbitrary lengths, involving no character segmentation or horizontal scale normalization. (3) It is not confined to any predefined lexicon and achieves remarkable performances in both lexicon-free and lexicon-based scene text recognition tasks. (4) It generates an effective yet much smaller model, which is more practical for real-world application scenarios. The experiments on standard benchmarks, including the IIIT-5K, Street View Text and ICDAR datasets, demonstrate the superiority of the proposed algorithm over the prior arts. Moreover, the proposed algorithm performs well in the task of image-based music score recognition, which evidently verifies the generality of it.

2,184 citations

Proceedings ArticleDOI
15 May 2014
TL;DR: Two simple schemes for drastically speeding up convolutional neural networks are presented, achieved by exploiting cross-channel or filter redundancy to construct a low rank basis of filters that are rank-1 in the spatial domain.
Abstract: The focus of this paper is speeding up the application of convolutional neural networks. While delivering impressive results across a range of computer vision and machine learning tasks, these networks are computationally demanding, limiting their deployability. Convolutional layers generally consume the bulk of the processing time, and so in this work we present two simple schemes for drastically speeding up these layers. This is achieved by exploiting cross-channel or filter redundancy to construct a low rank basis of filters that are rank-1 in the spatial domain. Our methods are architecture agnostic, and can be easily applied to existing CPU and GPU convolutional frameworks for tuneable speedup performance. We demonstrate this with a real world network designed for scene text character recognition [15], showing a possible 2.5× speedup with no loss in accuracy, and 4.5× speedup with less than 1% drop in accuracy, still achieving state-of-the-art on standard benchmarks.

1,159 citations


Cites background from "Synthetic Data and Artificial Neura..."

  • ...The combination of an endto-end learning system with minimal need for human design decisions, and the ability to efficiently train large and complex models, have allowed them to achieve state-of-the-art performance in a number of benchmarks [10, 14, 19, 33, 37, 38]....

    [...]

Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, a Fully-Convolutional Regression Network (FCRN) was proposed to perform text detection and bounding-box regression at all locations and multiple scales in an image.
Abstract: In this paper we introduce a new method for text detection in natural images. The method comprises two contributions: First, a fast and scalable engine to generate synthetic images of text in clutter. This engine overlays synthetic text to existing background images in a natural way, accounting for the local 3D scene geometry. Second, we use the synthetic images to train a Fully-Convolutional Regression Network (FCRN) which efficiently performs text detection and bounding-box regression at all locations and multiple scales in an image. We discuss the relation of FCRN to the recently-introduced YOLO detector, as well as other end-toend object detection systems based on deep learning. The resulting detection network significantly out performs current methods for text detection in natural images, achieving an F-measure of 84.2% on the standard ICDAR 2013 benchmark. Furthermore, it can process 15 images per second on a GPU.

1,142 citations

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Posted Content
TL;DR: The authors randomly omits half of the feature detectors on each training case to prevent complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors.
Abstract: When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other specific feature detectors. Instead, each neuron learns to detect a feature that is generally helpful for producing the correct answer given the combinatorially large variety of internal contexts in which it must operate. Random "dropout" gives big improvements on many benchmark tasks and sets new records for speech and object recognition.

6,899 citations


"Synthetic Data and Artificial Neura..." refers methods in this paper

  • ...We train the network by back-propagating the standard multinomial logistic regression loss with dropout [10], which improves generalization....

    [...]

Journal ArticleDOI
TL;DR: The DRC model is a computational realization of the dual-route theory of reading, and is the only computational model of reading that can perform the 2 tasks most commonly used to study reading: lexical decision and reading aloud.
Abstract: This article describes the Dual Route Cascaded (DRC) model, a computational model of visual word recognition and reading aloud. The DRC is a computational realization of the dual-route theory of reading, and is the only computational model of reading that can perform the 2 tasks most commonly used to study reading: lexical decision and reading aloud. For both tasks, the authors show that a wide variety of variables that influence human latencies influence the DRC model's latencies in exactly the same way. The DRC model simulates a number of such effects that other computational models of reading do not, but there appear to be no effects that any other current computational model of reading can simulate but that the DRC model cannot. The authors conclude that the DRC model is the most successful of the existing computational models of reading.

3,472 citations


"Synthetic Data and Artificial Neura..." refers methods in this paper

  • ...ter sequence encoding (Sect. 3.2), and bag-of-N-grams encoding (Sect. 3.3). Our recognition methods work by performing inference on the word image holistically, mimicking more closely how humans read [6], rather than by sequential character classification as is traditionally done. Due to the large training data requirements of these models, we also present a synthetic data generation method. This synt...

    [...]

Proceedings Article
23 Feb 2014
TL;DR: In this article, a multiscale and sliding window approach is proposed to predict object boundaries, which is then accumulated rather than suppressed in order to increase detection confidence, and OverFeat is the winner of the ImageNet Large Scale Visual Recognition Challenge 2013.
Abstract: We present an integrated framework for using Convolutional Networks for classification, localization and detection. We show how a multiscale and sliding window approach can be efficiently implemented within a ConvNet. We also introduce a novel deep learning approach to localization by learning to predict object boundaries. Bounding boxes are then accumulated rather than suppressed in order to increase detection confidence. We show that different tasks can be learned simultaneously using a single shared network. This integrated framework is the winner of the localization task of the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) and obtained very competitive results for the detection and classifications tasks. In post-competition work, we establish a new state of the art for the detection task. Finally, we release a feature extractor from our best model called OverFeat.

3,043 citations