scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthetic Double-Stranded RNAs Are Adjuvants for the Induction of T Helper 1 and Humoral Immune Responses to Human Papillomavirus in Rhesus Macaques

TL;DR: Synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates.
Abstract: Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
29 Oct 2010-Immunity
TL;DR: There remains a need for improved adjuvants that enhance protective antibody responses, especially in populations that respond poorly to current vaccines, and the larger challenge is to develop vaccines that generate strong T cell immunity with purified or recombinant vaccine antigens.

1,556 citations


Cites background or methods from "Synthetic Double-Stranded RNAs Are ..."

  • ...Synthetic analogs of dsRNA (i.e., Poly IC) have been used as adjuvants (Longhi et al., 2009; Stahl-Hennig et al., 2009; Trumpfheller et al., 2008) and can act through two distinct types of PRRs. Viral or synthetic dsRNA activates TLR3 in endosomes (Alexopoulou et al., 2001) or through cytosolic…...

    [...]

  • ...Several synthetic analogs of dsRNA (Poly IC, Poly ICLC, and Poly IC12U) have been used as adjuvantswith soluble proteins, DC targeting constructs, or inactivated viral vaccines (Gowen et al., 2007; Stahl-Hennig et al., 2009; Trumpfheller et al., 2008)....

    [...]

  • ...Furthermore, complexing Poly IC with poly-L-lysine and carboxymethylcellose (poly ICLC) prolongs the adjuvant effect in vivo (Levy et al., 1975; Stahl-Hennig et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli.
Abstract: A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells are required to explain how this remarkable system is energized and directed. I frame this article in terms of the major decisions that my colleagues and I have made in dendritic cell science and some of the guiding themes at the time the decisions were made. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli. Our current focus is on antigen uptake receptors on dendritic cells. These receptors enable experiments involving selective targeting of antigens in situ and new approaches to vaccine design in preclinical and clinical systems.

1,024 citations

Journal ArticleDOI
TL;DR: The adjuvant action of poly IC requires a widespread innate type I IFN response that directly links antigen presentation by DCs to adaptive immunity, which is required in both marrow–derived and radioresistant host cells for adaptive responses.
Abstract: Relative to several other toll-like receptor (TLR) agonists, we found polyinosinic:polycytidylic acid (poly IC) to be the most effective adjuvant for Th1 CD4(+) T cell responses to a dendritic cell (DC)-targeted HIV gag protein vaccine in mice. To identify mechanisms for adjuvant action in the intact animal and the polyclonal T cell repertoire, we found poly IC to be the most effective inducer of type I interferon (IFN), which was produced by DEC-205(+) DCs, monocytes, and stromal cells. Antibody blocking or deletion of type I IFN receptor showed that IFN was essential for DC maturation and development of CD4(+) immunity. The IFN-AR receptor was directly required for DCs to respond to poly IC. STAT 1 was also essential, in keeping with the type I IFN requirement, but not type II IFN or IL-12 p40. Induction of type I IFN was mda5 dependent, but DCs additionally used TLR3. In bone marrow chimeras, radioresistant and, likely, nonhematopoietic cells were the main source of IFN, but mda5 was required in both marrow-derived and radioresistant host cells for adaptive responses. Therefore, the adjuvant action of poly IC requires a widespread innate type I IFN response that directly links antigen presentation by DCs to adaptive immunity.

583 citations


Cites background from "Synthetic Double-Stranded RNAs Are ..."

  • ...Among them, synthetic double-stranded RNA, polyinosinic:polycytidylic acid (poly IC), induces inflammation and long-lasting T cell immunity (Salem et al., 2006; Trumpfheller et al., 2008; Stahl-Hennig et al., 2009)....

    [...]

  • ...Also, Stahl-Hennig et al. (2009) have shown that poly IC is a more potent adjuvant than other agonists for responses to protein antigens in rhesus macaques....

    [...]

Journal ArticleDOI
12 Apr 2011-Vaccine
TL;DR: The nature and strength of the immune response induced by various Toll-like receptor ligands and their ability to act as vaccine adjuvants are described and those agents for which clinical results are available are reviewed.

442 citations

Journal ArticleDOI
TL;DR: It is explained how the study of nucleic acid-sensing mechanisms not only has revealed their central role in driving the responses mediated by many current vaccines, but is also revealing how they could be harnessed for the design of new vaccines.
Abstract: The demand is currently high for new vaccination strategies, particularly to help combat problematic intracellular pathogens, such as HIV and malarial parasites. In the past decade, the identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. This Review first addresses our current understanding of the nucleic acid-sensing immune machinery. We then explain how the study of nucleic acid-sensing mechanisms not only has revealed their central role in driving the responses mediated by many current vaccines, but is also revealing how they could be harnessed for the design of new vaccines.

356 citations

References
More filters
Journal ArticleDOI
19 Mar 1998-Nature
TL;DR: Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis and the realization that these cells are a powerful tool for manipulating the immune system is realized.
Abstract: B and T lymphocytes are the mediators of immunity, but their function is under the control of dendritic cells. Dendritic cells in the periphery capture and process antigens, express lymphocyte co-stimulatory molecules, migrate to lymphoid organs and secrete cytokines to initiate immune responses. They not only activate lymphocytes, they also tolerize T cells to antigens that are innate to the body (self-antigens), thereby minimizing autoimmune reactions. Once a neglected cell type, dendritic cells can now be readily obtained in sufficient quantities to allow molecular and cell biological analysis. With knowledge comes the realization that these cells are a powerful tool for manipulating the immune system.

14,532 citations


"Synthetic Double-Stranded RNAs Are ..." refers background in this paper

  • ...This may in part be due to the lack of TLR9 expression in myeloid primate DCs [15], which can be valuable for the priming of naı̈ve T cells and the induction of cellular immune responses [16,17]....

    [...]

Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations


"Synthetic Double-Stranded RNAs Are ..." refers background in this paper

  • ...This may in part be due to the lack of TLR9 expression in myeloid primate DCs [15], which can be valuable for the priming of naı̈ve T cells and the induction of cellular immune responses [16,17]....

    [...]

Journal ArticleDOI
18 Oct 2001-Nature
TL;DR: It is shown that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-κB and the production of type I interferons (IFNs).
Abstract: Toll-like receptors (TLRs) are a family of innate immune-recognition receptors that recognize molecular patterns associated with microbial pathogens, and induce antimicrobial immune responses. Double-stranded RNA (dsRNA) is a molecular pattern associated with viral infection, because it is produced by most viruses at some point during their replication. Here we show that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-kappaB and the production of type I interferons (IFNs). TLR3-deficient (TLR3-/-) mice showed reduced responses to polyinosine-polycytidylic acid (poly(I:C)), resistance to the lethal effect of poly(I:C) when sensitized with d-galactosamine (d-GalN), and reduced production of inflammatory cytokines. MyD88 is an adaptor protein that is shared by all the known TLRs. When activated by poly(I:C), TLR3 induces cytokine production through a signalling pathway dependent on MyD88. Moreover, poly(I:C) can induce activation of NF-kappaB and mitogen-activated protein (MAP) kinases independently of MyD88, and cause dendritic cells to mature.

6,066 citations

Journal ArticleDOI
04 May 2006-Nature
TL;DR: It is found that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection.
Abstract: The innate immune system senses viral infection by recognizing a variety of viral components (including double-stranded (ds)RNA) and triggers antiviral responses. The cytoplasmic helicase proteins RIG-I (retinoic-acid-inducible protein I, also known as Ddx58) and MDA5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) have been implicated in viral dsRNA recognition. In vitro studies suggest that both RIG-I and MDA5 detect RNA viruses and polyinosine-polycytidylic acid (poly(I:C)), a synthetic dsRNA analogue. Although a critical role for RIG-I in the recognition of several RNA viruses has been clarified, the functional role of MDA5 and the relationship between these dsRNA detectors in vivo are yet to be determined. Here we use mice deficient in MDA5 (MDA5-/-) to show that MDA5 and RIG-I recognize different types of dsRNAs: MDA5 recognizes poly(I:C), and RIG-I detects in vitro transcribed dsRNAs. RNA viruses are also differentially recognized by RIG-I and MDA5. We find that RIG-I is essential for the production of interferons in response to RNA viruses including paramyxoviruses, influenza virus and Japanese encephalitis virus, whereas MDA5 is critical for picornavirus detection. Furthermore, RIG-I-/- and MDA5-/- mice are highly susceptible to infection with these respective RNA viruses compared to control mice. Together, our data show that RIG-I and MDA5 distinguish different RNA viruses and are critical for host antiviral responses.

3,508 citations


"Synthetic Double-Stranded RNAs Are ..." refers background in this paper

  • ...MDA-5 is important for the IFN response induced by poly I:C [26,27]....

    [...]

Journal ArticleDOI
TL;DR: The new HPV-oriented model of cervical carcinogenesis should gradually replace older morphological models based only on cytology and histology, and can minimise the incidence of cervical cancer, and the morbidity and mortality it causes, even in low-resource settings.

2,429 citations