scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

18 Jan 2002-Science (American Association for the Advancement of Science)-Vol. 295, Iss: 5554, pp 469-472
TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract: A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.
Citations
More filters
Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations


Cites background from "Systematic Design of Pore Size and ..."

  • ...changing its underlying topology) in the design of MOFs with ultrahigh porosity and unusually large pore openings (5)....

    [...]

  • ...One of the smallest isoreticular structures of MOF-5 is Zn4O(fumarate)3 (34); one of the largest is IRMOF-16 [Zn4O(TPDC)3; TPDC 2– = terphenyl-4,4′′-dicarboxylate] (5) (fig....

    [...]

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations

Journal ArticleDOI
TL;DR: The potential to computationally predict, with good accuracy, affinities of guests for host frameworks points to the prospect of routinely predesigning frameworks to deliver desired properties.
Abstract: 1. INTRODUCTION Among the classes of highly porous materials, metalÀorganic frameworks (MOFs) are unparalleled in their degree of tunability and structural diversity as well as their range of chemical and physical properties. MOFs are extended crystalline structures wherein metal cations or clusters of cations (\" nodes \") are connected by multitopic organic \" strut \" or \" linker \" ions or molecules. The variety of metal ions, organic linkers, and structural motifs affords an essentially infinite number of possible combinations. 1 Furthermore, the possibility for postsynthetic modification adds an additional dimension to the synthetic variability. 2 Coupled with the growing library of experimentally determined structures, the potential to computationally predict, with good accuracy, affinities of guests for host frameworks points to the prospect of routinely predesigning frameworks to deliver desired properties. 3,4 MOFs are often compared to zeolites for their large internal surface areas, extensive porosity, and high degree of crystallinity. Correspondingly, MOFs and zeolites have been utilized for many of the same applications

5,925 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

References
More filters
Journal ArticleDOI

16,894 citations

Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Abstract: Open metal–organic frameworks are widely regarded as promising materials for applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field14,15. Here we report the synthesis of a metal–organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300?°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

6,778 citations

Journal ArticleDOI
TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Abstract: Secondary building units (SBUs) are molecular complexes and cluster entities in which ligand coordination modes and metal coordination environments can be utilized in the transformation of these fragments into extended porous networks using polytopic linkers (1,4-benzenedicarboxylate, 1,3,5,7-adamantanetetracarboxylate, etc.). Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.

4,753 citations

Journal ArticleDOI
TL;DR: The design of such a filigrane network requires the very careful control of chemical parameters and the reward is an assortment of different property profiles owing to the richness of possible variations.
Abstract: Air, air, air… and some solid skeleton; this is the basis for an interesting class of materials-the aerogels (shown schematically on the right). Can one therefore speak of "simple" chemistry? The design of such a filigrane network requires the very careful control of chemical parameters. The reward is an assortment of different property profiles owing to the richness of possible variations.

1,471 citations

Journal ArticleDOI
TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Abstract: Gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal−organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MOF-2), Zn3(BDC)3·6CH3OH (MOF-3), Zn2(BTC)NO3·(C2H5OH)5H2O (BTC = 1,3,5-benzenetricarboxylate) (MOF-4), and Zn4O(BDC)3·(DMF)8C6H5Cl (MOF-5), reveal type I isotherms for n = 2, 3, and 5, which is evidence of microporous and accessible channels having high structural integrity and organization. Although gas sorption into MOF-4 was not observed, careful examination of its ethanol sorption isotherms at 22 and 32 °C point to the presence of coordinatively unsaturated zinc centers within its pores, which upon ethanol sorption undergo coordination transitions from 3- to 4-, 4- to 5-, and 5- to 6-coordination. MOF-n materials were produced by building the extended analogues of molecular metal carboxylate clustersa strategy that has allowed the realization of the most porous and thermally stable framework yet re...

986 citations