scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

18 Jan 2002-Science (American Association for the Advancement of Science)-Vol. 295, Iss: 5554, pp 469-472
TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract: A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a series of MOFs/parylene-N hybrid materials were fabricated by adding a parylene layer onto the exterior surface of the MOFs via the chemical vapor deposition technique.
Abstract: Endowed with rich structural diversity and tunable functionalities, metal-organic frameworks (MOFs) have become appealing candidates in diverse applications. Nonetheless, many existing MOFs possess varying degrees of chemical instability in some extreme conditions, which significantly hampers their practical applications. Herein, we successfully fabricated a series of MOFs/parylene-N hybrid materials by introducing a parylene-N layer onto the exterior surface of MOFs via the chemical vapor deposition technique. Strikingly, the shielding layer not only imparts the chemical stability of MOFs without obviously impacting their inherent nature but also makes the coated MOFs possess outstanding catalytic performance in water-mediated organic reactions. Such an integrated system might open a new window for MOFs to broaden the scope of real-world application in harsh aqueous environments.

1 citations

Journal ArticleDOI
31 Aug 2013
TL;DR: This research attacked the mode confusion problem by developing a modeling framework to describe human interaction with metal-organic materials and found it to be a simple and efficient way to solve the problem.
Abstract: INTERACTIONS USING METAL-ORGANIC FRAMEWORKS AS SCAFFOLDS Mark D. Allendorf, Joseph C. Deaton, 3 Alexandra C. Ford, Michael E. Foster, 1 Dara Gough, Francois Leonard, 1 Kirsty Leong, 1 Erik D. Spoerke, 2 Albert A. Talin, Bryan M. Wong, Sandia National Laboratories, Livermore, CA 94551 -0969 Sandia National Laboratories, Albuquerque, NM 87185 -1411 Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403

1 citations

Book ChapterDOI
01 Jan 2021
TL;DR: The applications of metal-organic frameworks (MOFs) used for different kinds of reactions in chemistry are discussed in this paper, where the authors present an account of such materials' applicability in various chemical reactions.
Abstract: This chapter embraces the applications of metal-organic frameworks (MOFs) used for different kinds of reactions in chemistry These entities belong to a class where organic and inorganic are combined to generate hybrid materials having crystalline porous structure, well-defined geometry for various catalytical and industrial applications Such materials are simply recyclable and reusable for required times like a reaction flask for concurrent trials Distinctive defining attributes of MOFs include their tunable size, catalytic centers with open as well as bifunctional acidic and basic metallic sites, large surface area, adjustable structure, and high porosity and periodic order Apart from this, these materials are allowed to do variations in their scopes and features by not doing any alteration in topology This feature enhances their applicability in the field of redesigning molecules having greater absorbency with smaller density Such materials also possess unique thermal and chemical stability that makes them amenable for functionalized synthetic inorganic–organic hybrids The high surface area and remarkable structural flexibility of these hybrid materials make them promising candidates for gas storage, separation, activation of hydrogen, methane, and water-like molecules, monitoring the catalytically process of organic synthesis, drug delivery, biomedical imaging, as well as ionic conduction In this chapter, we present an account of such materials’ applicability in various chemical reactions

1 citations

Journal ArticleDOI
TL;DR: In this paper, seven metal-organic frameworks based on 3,4-bis (carboxymethoxy)benzoic acid (H 3 bcba), 3,5-bis(4-pyridyl)-1,2,4 -triazolyl (Hbpt) or 4,4′-bipyrithmidyl (4,4-, 4, 4′-Bipy) were successfully synthesized via hydrothermal reaction.

1 citations

Dissertation
01 Dec 2017
TL;DR: In this paper, the authors proposed a method to incorporate organic moieties into metal-organic frameworks (MOFs) for sulfur dioxide sequestration, which is a series of porous materials made of wellorganized organic metal nodes linked via organic ligands (linkers).
Abstract: Metal-organic frameworks (MOFs) are a series of porous materials made of wellorganized inorganic metal nodes linked via organic ligands (linkers). MOFs have gained particular attention due to their applications in gas adsorption and separation, selective sorption of harmful chemicals, catalysis, energy, sensing, bioscience, and electronics. The thesis will focus on two different aspects of MOFs. Briefly, in the first portion of the thesis, a less-toxic solvent than N,N-dimethylformamide (DMF) can be used to make MOFs will be demonstrated. In the latter portion of the thesis, my efforts to incorporate organic moieties into MOFs for sulfur dioxide sequestration will be described. With regard to the use of less-toxic solvents, it should be noted that with notable exceptions (e.g., mechanochemical, water-based, and electrochemical), the synthesis of MOFs is often carried out at elevated temperature using DMF or N,Ndiethylformamide (DEF) as the solvent. However, the industrial-scale synthesis of MOFs from DMF/DEF may generate significant amounts of DMF waste, which can exhibit reprotoxicity and end-of-life issues associated with the formation of NOx upon incineration. With the introduction of the Registration, Evaluation and Authorization of Chemicals (REACH) legislation in the European Union, there is a growing trend towards safer production and use of chemicals by industry. As such, it is crucial to develop green/sustainable methods of synthesizing MOFs. Dihydrolevoglucosenone (Cyrene), a green bioderived solvent from waste cellulose, was applied to the synthesis of MOFs. The MOF, HKUST-1, exhibited a larger Brunauer–Emmett–Teller (BET) surface area than HKUST-1 synthesized with DMF. Four additional archetypal MOFs were also synthesized to verify the universal application of Cyrene in the synthesis of MOFs. However, their BET surface areas were lower than DMF-made MOFs. It was observed that an aldol-condensation product of two Cyrene molecules, in addition to Cyrene trapped within the pores, were responsible for the lower-than expected surface areas. The use of Cyrene has led to a series of design principles that eliminate the need for problematic solvents such as DMF and can be applied to the synthesis of a wide range of MOFs. With regard to sulfur dioxide sequestration, it should be noted that sulfur dioxide, a colorless gas belonging to SOx family, yields detrimental effects via inhalation or absorption. Since MOFs are ideal sorbents for toxic gases, in Chapter 3, I will continue along the theme of reprotoxicity and end-of-life issues by designing MOFs which have the potential to chemically react with sulfur dioxide. Unlike the de novo synthetic pathways in the Chapter 2, the Chapter 3 will demonstrate how solvent-assisted linker exchange (SALE) and solvent-assisted linker incorporation (SALI) can be used to make MOFs with the ideal functionalities for sulfur dioxide sequestration. In Chapter 3, the main focus of the work was to introduce the butadiene functional groups into different MOFs, namely UiO-66, UiO-66-MA (muconic-acid-functionalized UiO-66), MOF-808, MOF-808-BS (butadiene-sulfone-functionalized MOF-808) and MOF-808-BD (butadiene-functionalized MOF-808), the SALI method was vitalized to determine if the butadiene group could undergo a cheletropic reaction in the presence of sulfur dioxide inside the MOF. All MOFs were exposed to a constant flow of sulfur dioxide, the UiO-66-MA was observed to take up three times more sulfur dioxide than the unfunctionalized parent UiO-66. For the MOF-808 series, surprisingly, the unfuctionalized MOF-808 was able to absorb more than two times the sulfur dioxide than MOF-808-BD, and five times higher than MOF-808-BS, respectively. This suggests that the terminal waters and hydroxide groups are responsible for the enhanced uptake. Despite the improved uptake of sulfur dioxide in UiO-66-MA and MOF-808, nuclear magnetic resonance (NMR) and infrared (IR) data indicate that no chemical change occurred to the butadiene-functionalized group, which suggests that a cheletropic reaction did not occur.

1 citations

References
More filters
Journal ArticleDOI

16,894 citations

Journal ArticleDOI
18 Nov 1999-Nature
TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Abstract: Open metal–organic frameworks are widely regarded as promising materials for applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 in catalysis, separation, gas storage and molecular recognition. Compared to conventionally used microporous inorganic materials such as zeolites, these organic structures have the potential for more flexible rational design, through control of the architecture and functionalization of the pores. So far, the inability of these open frameworks to support permanent porosity and to avoid collapsing in the absence of guest molecules, such as solvents, has hindered further progress in the field14,15. Here we report the synthesis of a metal–organic framework which remains crystalline, as evidenced by X-ray single-crystal analyses, and stable when fully desolvated and when heated up to 300?°C. This synthesis is achieved by borrowing ideas from metal carboxylate cluster chemistry, where an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxylates. The rigid and divergent character of the added linker allows the articulation of the clusters into a three-dimensional framework resulting in a structure with higher apparent surface area and pore volume than most porous crystalline zeolites. This simple and potentially universal design strategy is currently being pursued in the synthesis of new phases and composites, and for gas-storage applications.

6,778 citations

Journal ArticleDOI
TL;DR: Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.
Abstract: Secondary building units (SBUs) are molecular complexes and cluster entities in which ligand coordination modes and metal coordination environments can be utilized in the transformation of these fragments into extended porous networks using polytopic linkers (1,4-benzenedicarboxylate, 1,3,5,7-adamantanetetracarboxylate, etc.). Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis of a new class of porous materials with robust structures and high porosity.

4,753 citations

Journal ArticleDOI
TL;DR: The design of such a filigrane network requires the very careful control of chemical parameters and the reward is an assortment of different property profiles owing to the richness of possible variations.
Abstract: Air, air, air… and some solid skeleton; this is the basis for an interesting class of materials-the aerogels (shown schematically on the right). Can one therefore speak of "simple" chemistry? The design of such a filigrane network requires the very careful control of chemical parameters. The reward is an assortment of different property profiles owing to the richness of possible variations.

1,471 citations

Journal ArticleDOI
TL;DR: In this paper, gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal-organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MoF-2) and Zn3(bDC)3·6CH3OH(MOF)-3, Zn2(BTC)NO3·(C2H5OH
Abstract: Gas sorption isotherm measurements performed on the evacuated derivatives of four porous metal−organic frameworks (MOF-n), Zn(BDC)·(DMF)(H2O) (DMF = N,N‘-dimethylformamide, BDC = 1,4-benzenedicarboxylate) (MOF-2), Zn3(BDC)3·6CH3OH (MOF-3), Zn2(BTC)NO3·(C2H5OH)5H2O (BTC = 1,3,5-benzenetricarboxylate) (MOF-4), and Zn4O(BDC)3·(DMF)8C6H5Cl (MOF-5), reveal type I isotherms for n = 2, 3, and 5, which is evidence of microporous and accessible channels having high structural integrity and organization. Although gas sorption into MOF-4 was not observed, careful examination of its ethanol sorption isotherms at 22 and 32 °C point to the presence of coordinatively unsaturated zinc centers within its pores, which upon ethanol sorption undergo coordination transitions from 3- to 4-, 4- to 5-, and 5- to 6-coordination. MOF-n materials were produced by building the extended analogues of molecular metal carboxylate clustersa strategy that has allowed the realization of the most porous and thermally stable framework yet re...

986 citations