scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

18 Jan 2002-Science (American Association for the Advancement of Science)-Vol. 295, Iss: 5554, pp 469-472
TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Abstract: A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups –Br, –NH2, –OC3H7, –OC5H11, –C2H4, and –C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.
Citations
More filters
Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations


Cites background from "Systematic Design of Pore Size and ..."

  • ...changing its underlying topology) in the design of MOFs with ultrahigh porosity and unusually large pore openings (5)....

    [...]

  • ...One of the smallest isoreticular structures of MOF-5 is Zn4O(fumarate)3 (34); one of the largest is IRMOF-16 [Zn4O(TPDC)3; TPDC 2– = terphenyl-4,4′′-dicarboxylate] (5) (fig....

    [...]

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations

Journal ArticleDOI
TL;DR: The potential to computationally predict, with good accuracy, affinities of guests for host frameworks points to the prospect of routinely predesigning frameworks to deliver desired properties.
Abstract: 1. INTRODUCTION Among the classes of highly porous materials, metalÀorganic frameworks (MOFs) are unparalleled in their degree of tunability and structural diversity as well as their range of chemical and physical properties. MOFs are extended crystalline structures wherein metal cations or clusters of cations (\" nodes \") are connected by multitopic organic \" strut \" or \" linker \" ions or molecules. The variety of metal ions, organic linkers, and structural motifs affords an essentially infinite number of possible combinations. 1 Furthermore, the possibility for postsynthetic modification adds an additional dimension to the synthetic variability. 2 Coupled with the growing library of experimentally determined structures, the potential to computationally predict, with good accuracy, affinities of guests for host frameworks points to the prospect of routinely predesigning frameworks to deliver desired properties. 3,4 MOFs are often compared to zeolites for their large internal surface areas, extensive porosity, and high degree of crystallinity. Correspondingly, MOFs and zeolites have been utilized for many of the same applications

5,925 citations

Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the relationship between porosity and interpenetration of open metal-organic frameworks has been discussed, and a synthetic strategy utilizing secondary building units (SBUs) for achieving stable, highly porous, and functionalized open networks has been proposed.
Abstract: The rapid growth in the area of metal-organic frameworks (MOFs) continues to provide open structures with interesting compositions, architectures and properties. 2,3 However, this progress, although significant, has not witnessed many discussions on the relationship between porosity and interpenetration of open frameworks; a topic addressed here. We have recently used a synthetic strategy utilizing secondary building units (SBUs) for achieving stable, highly porous, and functionalized open networks.4-6 Here, the extended 3-D framework of crystalline MOF9, Tb2(ADB)3[(CH3)2SO]4‚16[(CH3)2SO], illustrates another aspect of SBUs: namely, their ability to support the existence of large free volume in interpenetrating structures, which thus far have had the propensity to form assemblies containing very little or no free volume. 2

392 citations

Journal ArticleDOI
TL;DR: In this article, a common trend of gravimetric methane adsorption capacity scaling with surface area among the diverse microporous adsorbents (viz., coals, carbons, zeolites, silica gel and an MCM-41 type material) is demonstrated.
Abstract: Methane adsorption data (both experimental and simulated) under conditions of direct relevance for vehicular natural gas storage, i.e., at 500 psig and ambient temperature, has been compiled from the literature for various microporous adsorbents and discussed in this work. Characterization of microporosity has been briefly reviewed, followed with a discussion on the porous structure of natural gas adsorbents. A common trend of gravimetric methane adsorption capacity scaling with surface area among the diverse microporous adsorbents (viz., coals, carbons, zeolites, silica gel and an MCM-41 type material) is demonstrated. Further, it is substantiated and emphasized that increasing the adsorbent surface area on a volumetric basis is very important for vehicular natural gas storage where the fuel storage volume is a constraint. The effect of other adsorbent properties such as heat of adsorption and heat capacity on the natural gas storage capacity is also discussed.

387 citations

Journal ArticleDOI

209 citations

Journal ArticleDOI
TL;DR: In this paper, the 3-fold symmetric 1,3,5-tris(4-ethynylbenzonitrile)benzene was shown to have a nearly invariant pseudohexagonal porous structure type.
Abstract: Investigations on molecular variants of the 3-fold symmetric 1,3,5-tris(4-ethynylbenzonitrile)benzene crystallized with silver triflate revealed a nearly invariant pseudohexagonal porous structure type. Modifications involved the attachment of pendant groups to the central aromatic ring of the parent molecule. Pendant groups include the vinyl group, stilbene, the chiral group myrtanol, and groups with different chemical functionalities such as alcohols, ethers, and esters. Modifications also included the addition of elongated spacer units between the central benzene ring and the peripheral nitrile groups. In these molecules the acetylene bridges of 1,3,5-tris(4-ethynylbenzonitrile)benzene were replaced with diacetylene, ethynylbenzene, and diethynylbenzene type units. Single-crystal refinements for pentoxy-2,4,6-tris(4-ethynylbenzonitrile)benzene·AgOTf and 1,3,5-tris(4-(4-ethynylbenzonitrile)phenyl)benzene·AgOTf as well as powder data on 12 crystalline phases showed the consistent formation of pseudohexag...

196 citations