scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay

TL;DR: A massively parallel reporter assay is used to measure transcriptional levels induced by 145-bp DNA segments centered on evolutionarily conserved regulatory motif instances within enhancer chromatin states and finds statistically robust evidence that disrupting the predicted activator motifs abolishes enhancer function.
Abstract: Genome-wide chromatin annotations have permitted the mapping of putative regulatory elements across multiple human cell types. However, their experimental dissection by directed regulatory motif disruption has remained unfeasible at the genome scale. Here, we use a massively parallel reporter assay (MPRA) to measure the transcriptional levels induced by 145-bp DNA segments centered on evolutionarily conserved regulatory motif instances within enhancer chromatin states. We select five predicted activators (HNF1, HNF4, FOXA, GATA, NFE2L2) and two predicted repressors (GFI1, ZFP161) and measure reporter expression in erythroleukemia (K562) and liver carcinoma (HepG2) cell lines. We test 2104 wild-type sequences and 3314 engineered enhancer variants containing targeted motif disruptions, each using 10 barcode tags and two replicates. The resulting data strongly confirm the enhancer activity and cell-type specificity of enhancer chromatin states, the ability of 145-bp segments to recapitulate both, the necessary role of regulatory motifs in enhancer function, and the complementary roles of activator and repressor motifs. We find statistically robust evidence that (1) disrupting the predicted activator motifs abolishes enhancer function, while silent or motif-improving changes maintain enhancer activity; (2) evolutionary conservation, nucleosome exclusion, binding of other factors, and strength of the motif match are predictive of enhancer activity; (3) scrambling repressor motifs leads to aberrant reporter expression in cell lines where the enhancers are usually inactive. Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale manipulation and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to develop predictive models of gene expression.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: It is shown that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity.
Abstract: Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

2,260 citations

Journal Article
TL;DR: In this article, a nucleosome-DNA interaction model was proposed to predict the genome-wide organization of nucleosomes, and it was shown that genomes encode an intrinsic nucleosomal organization and that this intrinsic organization can explain ∼50% of the in-vivo positions.
Abstract: Eukaryotic genomes are packaged into nucleosome particles that occlude the DNA from interacting with most DNA binding proteins. Nucleosomes have higher affinity for particular DNA sequences, reflecting the ability of the sequence to bend sharply, as required by the nucleosome structure. However, it is not known whether these sequence preferences have a significant influence on nucleosome position in vivo, and thus regulate the access of other proteins to DNA. Here we isolated nucleosome-bound sequences at high resolution from yeast and used these sequences in a new computational approach to construct and validate experimentally a nucleosome–DNA interaction model, and to predict the genome-wide organization of nucleosomes. Our results demonstrate that genomes encode an intrinsic nucleosome organization and that this intrinsic organization can explain ∼50% of the in vivo nucleosome positions. This nucleosome positioning code may facilitate specific chromosome functions including transcription factor binding, transcription initiation, and even remodelling of the nucleosomes themselves.

1,399 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss commonly used high-throughput sequencing platforms, the growing array of sequencing assays developed around them, as well as the challenges facing current sequencing platforms and their clinical application.

954 citations


Cites background from "Systematic dissection of regulatory..."

  • ..., 2014) as well as high-throughput enhancer assays (Kheradpour et al., 2013), provide researchers with new tools to interrogate putative regulatory elements....

    [...]

  • ...Genome targeting techniques, such as CRISPR-Cas9 (Gilbert et al., 2014) as well as high-throughput enhancer assays (Kheradpour et al., 2013), provide researchers with new tools to interrogate putative regulatory elements....

    [...]

Journal Article
TL;DR: The comparison of related genomes has emerged as a powerful lens for genome interpretation as mentioned in this paper, which reveals a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons.
Abstract: The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.

926 citations

Journal ArticleDOI
01 Jan 2017-Database
TL;DR: GeneHancer is presented, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards, which assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease.
Abstract: A major challenge in understanding gene regulation is the unequivocal identification of enhancer elements and uncovering their connections to genes. We present GeneHancer, a novel database of human enhancers and their inferred target genes, in the framework of GeneCards. First, we integrated a total of 434 000 reported enhancers from four different genome-wide databases: the Encyclopedia of DNA Elements (ENCODE), the Ensembl regulatory build, the functional annotation of the mammalian genome (FANTOM) project and the VISTA Enhancer Browser. Employing an integration algorithm that aims to remove redundancy, GeneHancer portrays 285 000 integrated candidate enhancers (covering 12.4% of the genome), 94 000 of which are derived from more than one source, and each assigned an annotation-derived confidence score. GeneHancer subsequently links enhancers to genes, using: tissue co-expression correlation between genes and enhancer RNAs, as well as enhancer-targeted transcription factor genes; expression quantitative trait loci for variants within enhancers; and capture Hi-C, a promoter-specific genome conformation assay. The individual scores based on each of these four methods, along with gene–enhancer genomic distances, form the basis for GeneHancer’s combinatorial likelihood-based scores for enhancer–gene pairing. Finally, we define ‘elite’ enhancer–gene relations reflecting both a high-likelihood enhancer definition and a strong enhancer–gene association. GeneHancer predictions are fully integrated in the widely used GeneCards Suite, whereby candidate enhancers and their annotations are displayed on every relevant GeneCard. This assists in the mapping of non-coding variants to enhancers, and via the linked genes, forms a basis for variant–phenotype interpretation of whole-genome sequences in health and disease. Database URL: http://www.genecards.org/

786 citations


Cites methods from "Systematic dissection of regulatory..."

  • ...An analogous experimental approach that has recently been applied on a high throughput scale is using massively parallel reporter assays (16, 17)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Abstract: We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the logexpectation score, and refinement using treedependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

37,524 citations

Journal ArticleDOI
TL;DR: This paper provides an introduction to the WEKA workbench, reviews the history of the project, and, in light of the recent 3.6 stable release, briefly discusses what has been added since the last stable version (Weka 3.4) released in 2003.
Abstract: More than twelve years have elapsed since the first public release of WEKA. In that time, the software has been rewritten entirely from scratch, evolved substantially and now accompanies a text on data mining [35]. These days, WEKA enjoys widespread acceptance in both academia and business, has an active community, and has been downloaded more than 1.4 million times since being placed on Source-Forge in April 2000. This paper provides an introduction to the WEKA workbench, reviews the history of the project, and, in light of the recent 3.6 stable release, briefly discusses what has been added since the last stable version (Weka 3.4) released in 2003.

19,603 citations


"Systematic dissection of regulatory..." refers background in this paper

  • ...(B) Predictive power for recognizing enhancers that are likely to show high wild-type reporter expression based on each of these individual features and a combination of features using logistic regression (Hall et al. 2009)....

    [...]

Journal ArticleDOI
18 May 2007-Cell
TL;DR: High-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology are generated.

6,488 citations


"Systematic dissection of regulatory..." refers background in this paper

  • ...…recent studies that have used genome-wide chromatin maps to predict thousands of candi- date distal enhancer regions across multiple human cell types (Barski et al. 2007; Heintzman et al. 2009; Hesselberth et al. 2009; Ernst and Kellis 2010; Ernst et al. 2011), and we seek to characterize…...

    [...]

Journal ArticleDOI
TL;DR: An online catalog of SNP-trait associations from published genome-wide association studies for use in investigating genomic characteristics of trait/disease-associated SNPs (TASs) is developed, well-suited to guide future investigations of the role of common variants in complex disease etiology.
Abstract: We have developed an online catalog of SNP-trait associations from published genome-wide association studies for use in investigating genomic characteristics of trait/disease-associated SNPs (TASs). Reported TASs were common [median risk allele frequency 36%, interquartile range (IQR) 21%−53%] and were associated with modest effect sizes [median odds ratio (OR) 1.33, IQR 1.20–1.61]. Among 20 genomic annotation sets, reported TASs were significantly overrepresented only in nonsynonymous sites [OR = 3.9 (2.2−7.0), p = 3.5 × 10−7] and 5kb-promoter regions [OR = 2.3 (1.5−3.6), p = 3 × 10−4] compared to SNPs randomly selected from genotyping arrays. Although 88% of TASs were intronic (45%) or intergenic (43%), TASs were not overrepresented in introns and were significantly depleted in intergenic regions [OR = 0.44 (0.34−0.58), p = 2.0 × 10−9]. Only slightly more TASs than expected by chance were predicted to be in regions under positive selection [OR = 1.3 (0.8−2.1), p = 0.2]. This new online resource, together with bioinformatic predictions of the underlying functionality at trait/disease-associated loci, is well-suited to guide future investigations of the role of common variants in complex disease etiology.

4,041 citations


"Systematic dissection of regulatory..." refers background in this paper

  • ...Genome-wide genetic association studies suggest that nearly 85% of disease-associated variants lie outside protein-coding regions (Hindorff et al. 2009), emphasizing the importance of a systematic understanding of regulatory elements in the human genome at the nucleotide level....

    [...]

  • ...Genome-wide genetic association studies suggest that nearly 85% of disease-associated variants lie outside protein-coding regions (Hindorff et al. 2009), emphasizing the importance of a systematic understanding of regulatory elements in the human genome at the nucleotide level....

    [...]

Journal ArticleDOI
05 May 2011-Nature
TL;DR: This study presents a general framework for deciphering cis-regulatory connections and their roles in disease, and maps nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions.
Abstract: Chromatin profiling has emerged as a powerful means of genome annotation and detection of regulatory activity. The approach is especially well suited to the characterization of non-coding portions of the genome, which critically contribute to cellular phenotypes yet remain largely uncharted. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell-type specificities and their functional interactions. Focusing on cell-type-specific patterns of promoters and enhancers, we define multicell activity profiles for chromatin state, gene expression, regulatory motif enrichment and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell-type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for the interpretation of genome-wide association studies. Top-scoring disease single nucleotide polymorphisms are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus suggesting a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.

2,646 citations

Related Papers (5)
19 Feb 2015-Nature
Anshul Kundaje, Wouter Meuleman, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Angela Yen, Alireza Heravi-Moussavi, Pouya Kheradpour, Pouya Kheradpour, Zhizhuo Zhang, Zhizhuo Zhang, Jianrong Wang, Jianrong Wang, Michael J. Ziller, Viren Amin, John W. Whitaker, Matthew D. Schultz, Lucas D. Ward, Lucas D. Ward, Abhishek Sarkar, Abhishek Sarkar, Gerald Quon, Gerald Quon, Richard Sandstrom, Matthew L. Eaton, Matthew L. Eaton, Yi-Chieh Wu, Yi-Chieh Wu, Andreas R. Pfenning, Andreas R. Pfenning, Xinchen Wang, Xinchen Wang, Melina Claussnitzer, Melina Claussnitzer, Yaping Liu, Yaping Liu, Cristian Coarfa, R. Alan Harris, Noam Shoresh, Charles B. Epstein, Elizabeta Gjoneska, Elizabeta Gjoneska, Danny Leung, Wei Xie, R. David Hawkins, Ryan Lister, Chibo Hong, Philippe Gascard, Andrew J. Mungall, Richard A. Moore, Eric Chuah, Angela Tam, Theresa K. Canfield, R. Scott Hansen, Rajinder Kaul, Peter J. Sabo, Mukul S. Bansal, Mukul S. Bansal, Mukul S. Bansal, Annaick Carles, Jesse R. Dixon, Kai How Farh, Soheil Feizi, Soheil Feizi, Rosa Karlic, Ah Ram Kim, Ah Ram Kim, Ashwinikumar Kulkarni, Daofeng Li, Rebecca F. Lowdon, Ginell Elliott, Tim R. Mercer, Shane Neph, Vitor Onuchic, Paz Polak, Paz Polak, Nisha Rajagopal, Pradipta R. Ray, Richard C Sallari, Richard C Sallari, Kyle Siebenthall, Nicholas A Sinnott-Armstrong, Nicholas A Sinnott-Armstrong, Michael Stevens, Robert E. Thurman, Jie Wu, Bo Zhang, Xin Zhou, Arthur E. Beaudet, Laurie A. Boyer, Philip L. De Jager, Philip L. De Jager, Peggy J. Farnham, Susan J. Fisher, David Haussler, Steven J.M. Jones, Steven J.M. Jones, Wei Li, Marco A. Marra, Michael T. McManus, Shamil R. Sunyaev, Shamil R. Sunyaev, James A. Thomson, Thea D. Tlsty, Li-Huei Tsai, Li-Huei Tsai, Wei Wang, Robert A. Waterland, Michael Q. Zhang, Lisa Helbling Chadwick, Bradley E. Bernstein, Bradley E. Bernstein, Bradley E. Bernstein, Joseph F. Costello, Joseph R. Ecker, Martin Hirst, Alexander Meissner, Aleksandar Milosavljevic, Bing Ren, John A. Stamatoyannopoulos, Ting Wang, Manolis Kellis, Manolis Kellis