scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Table of Integrals, Series, and Products

01 Oct 1966-Mathematics of Computation-Vol. 20, Iss: 153, pp 310
About: This article is published in Mathematics of Computation.The article was published on 1966-10-01. It has received 4700 citations till now. The article focuses on the topics: Table (database) & Series (mathematics).
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the partition function of the zero-field eight-vertices model on a square M by N lattice is calculated exactly in the limit of M, N large.

1,648 citations

Journal ArticleDOI
TL;DR: A number of stochastic processes with normal inverse Gaussian marginals and various types of dependence structures are discussed, including Ornstein-Uhlenbeck type processes, superpositions of such processes and Stochastic volatility models in one and more dimensions.
Abstract: With the aim of modelling key stylized features of observational series from finance and turbulence a number of stochastic processes with normal inverse Gaussian marginals and various types of dependence structures are discussed. Ornstein-Uhlenbeck type processes, superpositions of such processes and stochastic volatility models in one and more dimensions are considered in particular, and some discussion is given of the feasibility of making likelihood inference for these models.

1,323 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to sparsity called the horseshoe estimator, which is a member of the same family of multivariate scale mixtures of normals.
Abstract: This paper proposes a new approach to sparsity called the horseshoe estimator. The horseshoe is a close cousin of other widely used Bayes rules arising from, for example, double-exponential and Cauchy priors, in that it is a member of the same family of multivariate scale mixtures of normals. But the horseshoe enjoys a number of advantages over existing approaches, including its robustness, its adaptivity to dierent sparsity patterns, and its analytical tractability. We prove two theorems that formally characterize both the horseshoe’s adeptness at large outlying signals, and its super-ecient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using a combination of real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers one would get by pursuing a full Bayesian model-averaging approach using a discrete mixture prior to model signals and noise.

1,260 citations

Journal ArticleDOI
TL;DR: By using the Gaussian approximation for message densities under density evolution, the sum-product decoding algorithm can be visualize and the optimization of degree distributions can be understood and done graphically using the visualization.
Abstract: Density evolution is an algorithm for computing the capacity of low-density parity-check (LDPC) codes under message-passing decoding. For memoryless binary-input continuous-output additive white Gaussian noise (AWGN) channels and sum-product decoders, we use a Gaussian approximation for message densities under density evolution to simplify the analysis of the decoding algorithm. We convert the infinite-dimensional problem of iteratively calculating message densities, which is needed to find the exact threshold, to a one-dimensional problem of updating the means of the Gaussian densities. This simplification not only allows us to calculate the threshold quickly and to understand the behavior of the decoder better, but also makes it easier to design good irregular LDPC codes for AWGN channels. For various regular LDPC codes we have examined, thresholds can be estimated within 0.1 dB of the exact value. For rates between 0.5 and 0.9, codes designed using the Gaussian approximation perform within 0.02 dB of the best performing codes found so far by using density evolution when the maximum variable degree is 10. We show that by using the Gaussian approximation, we can visualize the sum-product decoding algorithm. We also show that the optimization of degree distributions can be understood and done graphically using the visualization.

1,204 citations

Journal ArticleDOI
TL;DR: The dependence of macroscopic systems upon their environment under the assumption that quantum theory is universally valid is studied in this paper, where scattering of photons and molecules turns out to be essential even in intergalactic space in restricting the observable properties by locally destroying the corresponding phase relations.
Abstract: The dependence of macroscopic systems upon their environment is studied under the assumption that quantum theory is universally valid. In particular scattering of photons and molecules turns out to be essential even in intergalactic space in restricting the observable properties by locally destroying the corresponding phase relations. The remaining coherence determines the ‘classical’ properties of the macroscopic systems. In this way local classical properties have their origin in the nonlocal character of quantum states.

1,204 citations