scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Tafamidis for transthyretin familial amyloid polyneuropathy A randomized, controlled trial

TL;DR: This study provides Class II evidence that 20 mg tafamidis QD was associated with no difference in clinical progression in patients with TTR-FAP, as measured by the NIS-LL and the Norfolk QOL-DN score, supporting the hypothesis that preventing TTR dissociation can delay peripheral neurologic impairment.
Abstract: Objectives: To evaluate the efficacy and safety of 18 months of tafamidis treatment in patients with early-stage V30M transthyretin familial amyloid polyneuropathy (TTR-FAP). Methods: In this rando ...

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In patients with transthyretin amyloid cardiomyopathy, tafamidis was associated with reductions in all‐cause mortality and cardiovascular‐related hospitalizations and reduced the decline in functional capacity and quality of life as compared with placebo.
Abstract: Background Transthyretin amyloid cardiomyopathy is caused by the deposition of transthyretin amyloid fibrils in the myocardium. The deposition occurs when wild-type or variant transthyretin becomes unstable and misfolds. Tafamidis binds to transthyretin, preventing tetramer dissociation and amyloidogenesis. Methods In a multicenter, international, double-blind, placebo-controlled, phase 3 trial, we randomly assigned 441 patients with transthyretin amyloid cardiomyopathy in a 2:1:2 ratio to receive 80 mg of tafamidis, 20 mg of tafamidis, or placebo for 30 months. In the primary analysis, we hierarchically assessed all-cause mortality, followed by frequency of cardiovascular-related hospitalizations according to the Finkelstein–Schoenfeld method. Key secondary end points were the change from baseline to month 30 for the 6-minute walk test and the score on the Kansas City Cardiomyopathy Questionnaire–Overall Summary (KCCQ-OS), in which higher scores indicate better health status. Results In the prim...

1,340 citations

Journal ArticleDOI
TL;DR: A therapeutic approach mediated by RNA interference (RNAi) could reduce the production of transthyretin in peripheral nerves and the heart as mentioned in this paper, which is caused by the deposition of hepatocyte-derived tranthymretin amyloid in peripheral nerve and heart.
Abstract: BACKGROUND: Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart. A therapeutic approach mediated by RNA interference (RNAi) could reduce the production of transthyretin. METHODS: We identified a potent antitransthyretin small interfering RNA, which was encapsulated in two distinct first- and second-generation formulations of lipid nanoparticles, generating ALN-TTR01 and ALN-TTR02, respectively. Each formulation was studied in a single-dose, placebo-controlled phase 1 trial to assess safety and effect on transthyretin levels. We first evaluated ALN-TTR01 (at doses of 0.01 to 1.0 mg per kilogram of body weight) in 32 patients with transthyretin amyloidosis and then evaluated ALN-TTR02 (at doses of 0.01 to 0.5 mg per kilogram) in 17 healthy volunteers. RESULTS: Rapid, dose-dependent, and durable lowering of transthyretin levels was observed in the two trials. At a dose of 1.0 mg per kilogram, ALN-TTR01 suppressed transthyretin, with a mean reduction at day 7 of 38%, as compared with placebo (P=0.01); levels of mutant and nonmutant forms of transthyretin were lowered to a similar extent. For ALN-TTR02, the mean reductions in transthyretin levels at doses of 0.15 to 0.3 mg per kilogram ranged from 82.3 to 86.8%, with reductions of 56.6 to 67.1% at 28 days (P<0.001 for all comparisons). These reductions were shown to be RNAi-mediated. Mild-to-moderate infusion-related reactions occurred in 20.8% and 7.7% of participants receiving ALN-TTR01 and ALN-TTR02, respectively. CONCLUSIONS: ALN-TTR01 and ALN-TTR02 suppressed the production of both mutant and nonmutant forms of transthyretin, establishing proof of concept for RNAi therapy targeting messenger RNA transcribed from a disease-causing gene. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov numbers, NCT01148953 and NCT01559077.).

816 citations

Journal ArticleDOI
TL;DR: ATTRwt is an underdiagnosed disease that accounts for a significant number (13%) of HFpEF cases and the effect of emerging TTR-modifying drugs should be evaluated in these patients.
Abstract: Aims Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome with multiple underlying causes. Wild-type transthyretin (TTR) amyloidosis (ATTRwt) is an underdiagnosed cause of HFpEF that might benefit from new specific treatments. ATTRwt can be diagnosed non-invasively by 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid (99mTc-DPD) scintigraphy. We sought to determine the prevalence of ATTRwt among elderly patients admitted due to HFpEF. Methods and results We prospectively screened all consecutive patients ≥60 years old admitted due to HFpEF [left ventricular (LV) ejection fraction ≥50%] with LV hypertrophy (≥12 mm). All eligible patients were offered a 99mTc-DPD scintigraphy. The study included 120 HFpEF patients (59% women, 82 ± 8 years). A total of 16 patients (13.3%; 95% confidence interval: 7.2–19.5) showed a moderate-to-severe uptake on the 99mTc-DPD scintigraphy. All patients with a positive scan underwent genetic testing of the TTR gene, and no mutations were found. An endomyocardial biopsy was performed in four patients, confirming ATTRwt in all cases. There were no differences in age, gender, hypertension, diabetes, coronary artery disease, or atrial fibrillation between ATTRwt patients and patients with other HFpEF forms. Although patients with ATTRwt exhibited higher median N-terminal pro-brain natriuretic peptide (6467 vs. 3173 pg/L; P = 0.019), median troponin I (0.135 vs. 0.025 µg/L; P < 0.001), mean LV maximal wall thickness (17 ± 3.4 vs. 14 ± 2.5 mm; P = 0.001), rate of pericardial effusion (44 vs. 19%; P = 0.047), and rate of pacemakers (44 vs. 12%; P = 0.004), clinical overlap between ATTRwt and other HFpEF forms was high. Conclusion ATTRwt is an underdiagnosed disease that accounts for a significant number (13%) of HFpEF cases. The effect of emerging TTR-modifying drugs should be evaluated in these patients.

722 citations

Journal ArticleDOI
TL;DR: The molecular and structural basis of TTR tetramer stabilization by tafamidis is described, suggesting that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.
Abstract: The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A–retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils in elderly patients. Because tetramer dissociation is the rate-limiting step in TTR amyloidogenesis, targeted therapies have focused on small molecules that kinetically stabilize the tetramer, inhibiting TTR amyloid fibril formation. One such compound, tafamidis meglumine (Fx-1006A), has recently completed Phase II/III trials for the treatment of Transthyretin Type Familial Amyloid Polyneuropathy (TTR-FAP) and demonstrated a slowing of disease progression in patients heterozygous for the V30M TTR mutation. Herein we describe the molecular and structural basis of TTR tetramer stabilization by tafamidis. Tafamidis binds selectively and with negative cooperativity (Kds ∼2 nM and ∼200 nM) to the two normally unoccupied thyroxine-binding sites of the tetramer, and kinetically stabilizes TTR. Patient-derived amyloidogenic variants of TTR, including kinetically and thermodynamically less stable mutants, are also stabilized by tafamidis binding. The crystal structure of tafamidis-bound TTR suggests that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.

562 citations

Journal ArticleDOI
25 Dec 2013-JAMA
TL;DR: Among patients with familial amyloid polyneuropathy, the use of diflunisal compared with placebo for 2 years reduced the rate of progression of neurological impairment and preserved quality of life.
Abstract: RESULTS By multiple imputation, the NIS+7 score increased by 25.0 (95% CI, 18.4-31.6) points in the placebo group and by 8.7 (95% CI, 3.3-14.1) points in the diflunisal group, a difference of 16.3 points (95% CI, 8.1-24.5 points; P < .001). Mean SF-36 physical scores decreased by 4.9 (95% CI, −7.6 to −2.2) points in the placebo group and increased by 1.5 (95% CI, −0.8 to 3.7) points in the diflunisal group (P < .001). Mean SF-36 mental scores declined by 1.1 (95% CI, −4.3 to 2.0) points in the placebo group while increasing by 3.7 (95% CI, 1.0-6.4) points in the diflunisal group (P = .02). By responder analysis, 29.7% of the diflunisal group and 9.4% of the placebo group exhibited neurological stability at 2 years (<2-point increase in NIS+7 score; P = .007). CONCLUSIONS AND RELEVANCE Among patients with familial amyloid polyneuropathy, the use of diflunisal compared with placebo for 2 years reduced the rate of progression of neurological impairment and preserved quality of life. Although longer-term follow-up studies are needed, these findings suggest benefit of this treatment for familial amyloid polyneuropathy.

539 citations

References
More filters
Journal ArticleDOI
TL;DR: In most circumstances, the threshold of discrimination for changes in health-related quality of life for chronic diseases appears to be approximately half a SD, which research in psychology has shown is approximately 1 part in 7.
Abstract: Background A number of studies have computed the minimally important difference (MID) for health-related quality of life instruments. Objective To determine whether there is consistency in the magnitude of MID estimates from different instruments. Methods We conducted a systematic review of the literature to identify studies that computed an MID and contained sufficient information to compute an effect size (ES). Thirty-eight studies fulfilled the criteria, resulting in 62 ESs. Results For all but 6 studies, the MID estimates were close to one half a SD (mean = 0.495, SD = 0.155). There was no consistent relationship with factors such as disease-specific or generic instrument or the number of response options. Negative changes were not associated with larger ESs. Population-based estimation procedures and brief follow-up were associated with smaller ESs, and acute conditions with larger ESs. An explanation for this consistency is that research in psychology has shown that the limit of people's ability to discriminate over a wide range of tasks is approximately 1 part in 7, which is very close to half a SD. Conclusion In most circumstances, the threshold of discrimination for changes in health-related quality of life for chronic diseases appears to be approximately half a SD.

3,816 citations

Journal ArticleDOI
TL;DR: The molecular and structural basis of TTR tetramer stabilization by tafamidis is described, suggesting that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.
Abstract: The transthyretin amyloidoses (ATTR) are invariably fatal diseases characterized by progressive neuropathy and/or cardiomyopathy. ATTR are caused by aggregation of transthyretin (TTR), a natively tetrameric protein involved in the transport of thyroxine and the vitamin A–retinol-binding protein complex. Mutations within TTR that cause autosomal dominant forms of disease facilitate tetramer dissociation, monomer misfolding, and aggregation, although wild-type TTR can also form amyloid fibrils in elderly patients. Because tetramer dissociation is the rate-limiting step in TTR amyloidogenesis, targeted therapies have focused on small molecules that kinetically stabilize the tetramer, inhibiting TTR amyloid fibril formation. One such compound, tafamidis meglumine (Fx-1006A), has recently completed Phase II/III trials for the treatment of Transthyretin Type Familial Amyloid Polyneuropathy (TTR-FAP) and demonstrated a slowing of disease progression in patients heterozygous for the V30M TTR mutation. Herein we describe the molecular and structural basis of TTR tetramer stabilization by tafamidis. Tafamidis binds selectively and with negative cooperativity (Kds ∼2 nM and ∼200 nM) to the two normally unoccupied thyroxine-binding sites of the tetramer, and kinetically stabilizes TTR. Patient-derived amyloidogenic variants of TTR, including kinetically and thermodynamically less stable mutants, are also stabilized by tafamidis binding. The crystal structure of tafamidis-bound TTR suggests that binding stabilizes the weaker dimer-dimer interface against dissociation, the rate-limiting step of amyloidogenesis.

562 citations

Journal ArticleDOI
31 Jan 2003-Science
TL;DR: A series of transthyretin amyloidosis inhibitors that functioned by increasing the kinetic barrier associated with misfolding, preventing amyloidsogenesis by stabilizing the native state.
Abstract: Genetic evidence suggests that inhibition of amyloid fibril formation by small molecules should be effective against amyloid diseases. Known amyloid inhibitors appear to function by shifting the aggregation equilibrium away from the amyloid state. Here, we describe a series of transthyretin amyloidosis inhibitors that functioned by increasing the kinetic barrier associated with misfolding, preventing amyloidogenesis by stabilizing the native state. The trans-suppressor mutation, threonine 119 --> methionine 119, which is known to ameliorate familial amyloid disease, also functioned through kinetic stabilization, implying that this small-molecule strategy should be effective in treating amyloid diseases.

487 citations

Journal ArticleDOI
01 Sep 2003-Amyloid
TL;DR: The list presented here documents all TTR gene mutations reported to date and includes information on a total of 100 separate forms of the protein, including 1 1 nonamyloidogenic TTR proteins.
Abstract: (2003). Tabulation of human transthyretin (TTR) variants, 2003. Amyloid: Vol. 10, No. 3, pp. 160-184.

472 citations

Related Papers (5)