scispace - formally typeset
Search or ask a question

Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

TL;DR: Shin et al. as discussed by the authors used a hybrid photonic-phononic waveguide structure and showed stimulated Brillouin scattering nonlinearities and gain, which offers new on-chip signal processing abilities.
Abstract: Exploiting photon–phonon coupling in nanoscale silicon waveguides could enable a host of powerful features in photonic devices. Using a hybrid photonic–phononic waveguide structure, Shin et al. show stimulated Brillouin scattering nonlinearities and gain, which offers new on-chip signal-processing abilities.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors experimentally and theoretically demonstrate stimulated Brillouin scattering in a silicon nanowire supported by a pillar, which results from the tight confinement of both photons and phonons.
Abstract: The authors experimentally and theoretically demonstrate stimulated Brillouin scattering in a silicon nanowire supported by a pillar, which results from the tight confinement of both photons and phonons.

360 citations

Journal ArticleDOI
TL;DR: An acoustic wave interference effect, similar to atomic coherent population trapping, is demonstrated, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion.
Abstract: Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

357 citations

Journal ArticleDOI
TL;DR: By exploiting the interaction between light and phonons in a silica microsphere resonator, it is possible to generate Brillouin scattering induced transparency, which is akin to electromagnetically induced transparency but for acoustic waves.
Abstract: By exploiting the interaction between light and phonons in a silica microsphere resonator it is possible to generate Brillouin scattering induced transparency, which is akin to electromagnetically induced transparency but for acoustic waves.

354 citations

Journal ArticleDOI
20 Feb 2015
TL;DR: In this paper, a chip-based MWP bandstop filter with ultrahigh suppression, high resolution in the megahertz range, and 0-30 GHz frequency tuning is presented. But the performance is limited by trade-offs between key parameters such as tuning range, resolution, and suppression.
Abstract: Highly selective and reconfigurable microwave filters are of great importance in radio-frequency signal processing. Microwave photonic (MWP) filters are of particular interest, as they offer flexible reconfiguration and an order of magnitude higher frequency tuning range than electronic filters. However, all MWP filters to date have been limited by trade-offs between key parameters such as tuning range, resolution, and suppression. This problem is exacerbated in the case of integrated MWP filters, blocking the path to compact, high-performance filters. Here we show the first chip-based MWP bandstop filter with ultrahigh suppression, high resolution in the megahertz range, and 0–30 GHz frequency tuning. This record performance was achieved using an ultralow Brillouin gain from a compact photonic chip and a novel approach of optical resonance-assisted RF signal cancellation. The results point to new ways of creating energy-efficient and reconfigurable integrated MWP signal processors for wireless communications and defence applications.

303 citations

Journal ArticleDOI
TL;DR: An experimental demonstration of Brillouin-scattering-induced transparency in a high-quality whispering-gallery-mode optical microresonantor establishes a new avenue towards integrated all-optical switching with low-power consumption, optical isolators and circulators.
Abstract: Stimulated Brillouin scattering is a non-linear interaction that allows light to be stored as coherent acoustic waves. Here, the authors report on Brillouin scattering-induced transparency in an optical microresonator whose high quality allows for long-lifetime non-reciprocal light storage.

298 citations

References
More filters
Book
Govind P. Agrawal1
01 Jan 1989
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

15,770 citations

Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: In this article, a coupled, nanoscale optical and mechanical resonator formed in a silicon microchip is used to cool the mechanical motion down to its quantum ground state (reaching an average phonon occupancy number of 0.85±0.08).
Abstract: The simple mechanical oscillator, canonically consisting of a coupled mass–spring system, is used in a wide variety of sensitive measurements, including the detection of weak forces and small masses. On the one hand, a classical oscillator has a well-defined amplitude of motion; a quantum oscillator, on the other hand, has a lowest-energy state, or ground state, with a finite-amplitude uncertainty corresponding to zero-point motion. On the macroscopic scale of our everyday experience, owing to interactions with its highly fluctuating thermal environment a mechanical oscillator is filled with many energy quanta and its quantum nature is all but hidden. Recently, in experiments performed at temperatures of a few hundredths of a kelvin, engineered nanomechanical resonators coupled to electrical circuits have been measured to be oscillating in their quantum ground state. These experiments, in addition to providing a glimpse into the underlying quantum behaviour of mesoscopic systems consisting of billions of atoms, represent the initial steps towards the use of mechanical devices as tools for quantum metrology or as a means of coupling hybrid quantum systems. Here we report the development of a coupled, nanoscale optical and mechanical resonator formed in a silicon microchip, in which radiation pressure from a laser is used to cool the mechanical motion down to its quantum ground state (reaching an average phonon occupancy number of 0.85±0.08). This cooling is realized at an environmental temperature of 20 K, roughly one thousand times larger than in previous experiments and paves the way for optical control of mesoscale mechanical oscillators in the quantum regime.

2,073 citations

Journal ArticleDOI
29 Aug 2008-Science
TL;DR: Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena.
Abstract: The coupling of optical and mechanical degrees of freedom is the underlying principle of many techniques to measure mechanical displacement, from macroscale gravitational wave detectors to microscale cantilevers used in scanning probe microscopy. Recent experiments have reached a regime where the back-action of photons caused by radiation pressure can influence the optomechanical dynamics, giving rise to a host of long-anticipated phenomena. Here we review these developments and discuss the opportunities for innovative technology as well as for fundamental science.

1,718 citations

Journal Article
TL;DR: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates as mentioned in this paper, however, any optical solution must be based on low-cost technologies if it is to be applied to the mass market.
Abstract: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates. Today, a silicon chip the size of a fingernail contains nearly 1 billion transistors and has the computing power that only a decade ago would take up an entire room of servers. As the relentless pursuit of Moore's law continues, and Internet-based communication continues to grow, the bandwidth demands needed to feed these devices will continue to increase and push the limits of copper-based signaling technologies. These signaling limitations will necessitate optical-based solutions. However, any optical solution must be based on low-cost technologies if it is to be applied to the mass market. Silicon photonics, mainly based on SOI technology, has recently attracted a great deal of attention. Recent advances and breakthroughs in silicon photonic device performance have shown that silicon can be considered a material onto which one can build optical devices. While significant efforts are needed to improve device performance and commercialize these technologies, progress is moving at a rapid rate. More research in the area of integration, both photonic and electronic, is needed. The future is looking bright. Silicon photonics could provide low-cost opto-electronic solutions for applications ranging from telecommunications down to chip-to-chip interconnects, as well as emerging areas such as optical sensing technology and biomedical applications. The ability to utilize existing CMOS infrastructure and manufacture these silicon photonic devices in the same facilities that today produce electronics could enable low-cost optical devices, and in the future, revolutionize optical communications

1,479 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Abstract: Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.

1,267 citations