scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Targeted delivery of protein arginine deiminase-4 inhibitors to limit arterial intimal NETosis and preserve endothelial integrity.

TL;DR: In this paper, Collagen IV-targeted nanoparticles (Col IV NP) were used to deliver PAD4 inhibitors selectively to regions of endothelial cell sloughing and collagen IV-rich basement membrane exposure.
Abstract: Aims Recent evidence suggests that "vulnerable plaques," which have received intense attention as underlying mechanism of acute coronary syndromes over the decades, actually rarely rupture and cause clinical events. Superficial plaque erosion has emerged as a growing cause of residual thrombotic complications of atherosclerosis in an era of increased preventive measures including lipid lowering, anti-hypertensive therapy, and smoking cessation. The mechanisms of plaque erosion remain poorly understood, and we currently lack validated effective diagnostics or therapeutics for superficial erosion. Eroded plaques have a rich extracellular matrix, an intact fibrous cap, sparse lipid, and few mononuclear cells, but do harbor neutrophil extracellular traps (NETs). We recently reported that NETs amplify and propagate the endothelial damage at the site of arterial lesions that recapitulate superficial erosion in mice. We showed that genetic loss of protein arginine deiminase (PAD)-4 function inhibited NETosis and preserved endothelial integrity. The current study used systemic administration of targeted nanoparticles to deliver an agent that limits NETs formation to probe mechanisms of and demonstrate a novel therapeutic approach to plaque erosion that limits endothelial damage. Methods and results We developed Collagen IV-targeted nanoparticles (Col IV NP) to deliver PAD4 inhibitors selectively to regions of endothelial cell sloughing and collagen IV-rich basement membrane exposure. We assessed the binding capability of the targeting ligand in vitro and evaluated Col IV NP targeting to areas of denuded endothelium in vivo in a mouse preparation that recapitulates features of superficial erosion. Delivery of the PAD4 inhibitor GSK484 reduced NET accumulation at sites of intimal injury and preserved endothelial continuity. Conclusions NPs directed to Col IV show selective uptake and delivery of their payload to experimentally eroded regions, illustrating their translational potential. Our results further support the role of PAD4 and NETs in superficial erosion.
Citations
More filters
Journal ArticleDOI
01 Apr 2021-Nature
TL;DR: In this article, the authors review the evidence and discuss its implications for understanding of atherosclerosis, and examine its implications in the treatment of cardiovascular disease. But they do not discuss the role of the bone marrow in the pathogenesis of the disease.
Abstract: Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis—such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress—have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the ‘vulnerable plaque’ concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases. This Review discusses recent research that has transformed our understanding of the biology of atherosclerosis, and examines its implications for the treatment of atherosclerotic cardiovascular disease.

540 citations

Journal ArticleDOI
TL;DR: Soehnlein et al. as discussed by the authors consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms.
Abstract: Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk. The contribution of inflammation to atherosclerosis is substantial, and is just beginning to be understood. In this Review, Soehnlein and Libby discuss how inflammation promotes atherosclerosis and its consequences, and how such processes could be targeted therapeutically. The potential pitfalls of targeting immune processes — namely the increased potential for infections — are also discussed, along with ways to modulate cardiovascular therapies in time and space to make them more effective.

287 citations

Journal ArticleDOI
TL;DR: In this article, inflammatory mediators likely link many traditional and emerging risk factors with atherogenesis, and represent ripe targets for mitigating the disease, thus, inflammatory processes contribute to all phases of the life cycle of atherosclerotic plaques, and represents ripe targets to mitigate the disease.
Abstract: Inflammation orchestrates each stage of the life cycle of atherosclerotic plaques. Indeed, inflammatory mediators likely link many traditional and emerging risk factors with atherogenesis. Atheroma initiation involves endothelial activation with recruitment of leukocytes to the arterial intima, where they interact with lipoproteins or their derivatives that have accumulated in this layer. The prolonged and usually clinically silent progression of atherosclerosis involves periods of smoldering inflammation, punctuated by episodes of acute activation that may arise from inflammatory mediators released from sites of extravascular injury or infection or from subclinical disruptions of the plaque. Smooth muscle cells and infiltrating leukocytes can proliferate but also undergo various forms of cell death that typically lead to formation of a lipid-rich "necrotic" core within the evolving intimal lesion. Extracellular matrix synthesized by smooth muscle cells can form a fibrous cap that overlies the lesion's core. Thus, during progression of atheroma, cells not only procreate but perish. Inflammatory mediators participate in both processes. The ultimate clinical complication of atherosclerotic plaques involves disruption that provokes thrombosis, either by fracture of the plaque's fibrous cap or superficial erosion. The consequent clots can cause acute ischemic syndromes if they embarrass perfusion. Incorporation of the thrombi can promote plaque healing and progressive intimal thickening that can aggravate stenosis and further limit downstream blood flow. Inflammatory mediators regulate many aspects of both plaque disruption and the healing process. Thus, inflammatory processes contribute to all phases of the lifecycle of atherosclerotic plaques, and represent ripe targets for mitigating the disease.

51 citations

Journal ArticleDOI
TL;DR: In this article, a review outlines recent advances in understanding the mechanisms of neutrophil extracellular trap (NET) release and functions in sterile disease, and discusses mechanisms of physiological regulation and the importance of heterogeneity in NET formation and composition.
Abstract: At the frontline of the host defense response, neutrophil antimicrobial functions have adapted to combat infections and injuries of different origins and magnitude. The release of web-like DNA structures named neutrophil extracellular traps (NETs) constitutes an important mechanism by which neutrophils prevent pathogen dissemination or deal with microorganisms of a bigger size. At the same time, nuclear and granule proteins with microbicidal activity bind to these DNA structures promoting the elimination of entrapped pathogens. However, these toxic properties may produce unwanted effects in the host, when neutrophils uncontrollably release NETs upon persistent inflammation. As a consequence, NET accumulation can produce vessel occlusion, tissue damage, and prolonged inflammation associating with the progression and exacerbation of multiple pathologic conditions. This review outlines recent advances in understanding the mechanisms of NET release and functions in sterile disease. We also discuss mechanisms of physiological regulation and the importance of neutrophil heterogeneity in NET formation and composition.

36 citations

Journal ArticleDOI
TL;DR: In this article, optical coherence tomography (OCT) was used to diagnose plaque erosion in acute coronary syndromes (ACS) and antithrombotic therapy without stenting may be a safe and effective option.

12 citations

References
More filters
Journal ArticleDOI
TL;DR: In patients who presented with an acute coronary syndrome and underwent percutaneous coronary intervention, major adverse cardiovascular events occurring during follow-up were equally attributable to recurrence at the site of culprit lesions and to nonculprit lesions.
Abstract: A b s t r ac t Background Atherosclerotic plaques that lead to acute coronary syndromes often occur at sites of angiographically mild coronary-artery stenosis. Lesion-related risk factors for such events are poorly understood. Methods In a prospective study, 697 patients with acute coronary syndromes underwent three-vessel coronary angiography and gray-scale and radiofrequency intravascular ultrasonographic imaging after percutaneous coronary intervention. Subsequent major adverse cardiovascular events (death from cardiac causes, cardiac arrest, myocardial infarction, or rehospitalization due to unstable or progressive angina) were adjudicated to be related to either originally treated (culprit) lesions or untreated (nonculprit) lesions. The median follow-up period was 3.4 years. Results The 3-year cumulative rate of major adverse cardiovascular events was 20.4%. Events were adjudicated to be related to culprit lesions in 12.9% of patients and to nonculprit lesions in 11.6%. Most nonculprit lesions responsible for follow-up events were angiographically mild at baseline (mean [±SD] diameter stenosis, 32.3±20.6%). However, on multivariate analysis, nonculprit lesions associated with recurrent events were more likely than those not associated with recurrent events to be characterized by a plaque burden of 70% or greater (hazard ratio, 5.03; 95% confidence interval [CI], 2.51 to 10.11; P<0.001) or a minimal luminal area of 4.0 mm 2 or less (hazard ratio, 3.21; 95% CI, 1.61 to 6.42; P = 0.001) or to be classified on the basis of radiofrequency intravascular ultrasonography as thin-cap fibroatheromas (hazard ratio, 3.35; 95% CI, 1.77 to 6.36; P<0.001). Conclusions In patients who presented with an acute coronary syndrome and underwent percutaneous coronary intervention, major adverse cardiovascular events occurring during follow-up were equally attributable to recurrence at the site of culprit lesions and to nonculprit lesions. Although nonculprit lesions that were responsible for unanticipated events were frequently angiographically mild, most were thin-cap fibroatheromas or were characterized by a large plaque burden, a small luminal area, or some combination of these characteristics, as determined by gray-scale and radiofrequency intravascular ultrasonography. (Funded by Abbott Vascular and Volcano; ClinicalTrials.gov number, NCT00180466.)

2,649 citations

Journal ArticleDOI
17 Oct 2013-Blood
TL;DR: The evidence that neutrophil extracellular traps (NETs) play a critical role in innate immunity is examined and how infections are related to the development of autoimmune and vasculitic diseases through unintended but detrimental bystander damage resulting from NET release is examined.

723 citations

Journal ArticleDOI
TL;DR: Novel, selective PAD4 inhibitors binding to a calcium-deficient form of the PAD3 enzyme have been validated, for the first time, in both histone citrullination and neutrophil extracellular trap formation, validating the critical enzymatic role of human and mouse PAD 4.
Abstract: PAD4 has been strongly implicated in the pathogenesis of autoimmune, cardiovascular and oncological diseases through clinical genetics and gene disruption in mice. New selective PAD4 inhibitors binding a calcium-deficient form of the PAD4 enzyme have validated the critical enzymatic role of human and mouse PAD4 in both histone citrullination and neutrophil extracellular trap formation for, to our knowledge, the first time. The therapeutic potential of PAD4 inhibitors can now be explored.

474 citations

Journal ArticleDOI
TL;DR: It is suggested that in vivo local shear stress influences luminal endothelial cell apoptosis and may be a major determinant of plaque erosion and thrombosis.
Abstract: Background—Blood flow characteristics influence endothelial cell apoptosis. However, little is known about the occurrence of endothelial cell apoptosis in human atherosclerosis and its relation to blood flow. Methods and Results—A total of 42 human carotid atherosclerotic plaques were retrieved by endarterectomy; they were examined in the longitudinal axial direction. Plaques were included in this study when upstream and downstream parts were clearly visible, occlusion was absent, and immunostaining for luminal endothelium was present all along the plaque. Using these criteria, 13 plaques were processed for further immunohistochemical studies (using anti-CD31, anti-Ki-67, and anti-splicing factor antibodies) and in situ detection of apoptosis (terminal dUTP nick end-labeling and ligase assay). Eight plaques showed ≥1 apoptotic endothelial cell at the luminal surface. Quantitative analysis of endothelial cell apoptosis in these plaques showed a systematic preferential occurrence of apoptosis in the downstr...

406 citations

Journal ArticleDOI
TL;DR: Findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy to prevent heart disease.
Abstract: Chronic, nonresolving inflammation is a critical factor in the clinical progression of advanced atherosclerotic lesions. In the normal inflammatory response, resolution is mediated by several agonists, among which is the glucocorticoid-regulated protein called annexin A1. The proresolving actions of annexin A1, which are mediated through its receptor N-formyl peptide receptor 2 (FPR2/ALX), can be mimicked by an amino-terminal peptide encompassing amino acids 2–26 (Ac2-26). Collagen IV (Col IV)–targeted nanoparticles (NPs) containing Ac2-26 were evaluated for their therapeutic effect on chronic, advanced atherosclerosis in fat-fed Ldlr−/− mice. When administered to mice with preexisting lesions, Col IV–Ac2-26 NPs were targeted to lesions and led to a marked improvement in key advanced plaque properties, including an increase in the protective collagen layer overlying lesions (which was associated with a decrease in lesional collagenase activity), suppression of oxidative stress, and a decrease in plaque necrosis. In mice lacking FPR2/ALX in myeloid cells, these improvements were not seen. Thus, administration of a resolution-mediating peptide in a targeted NP activates its receptor on myeloid cells to stabilize advanced atherosclerotic lesions. These findings support the concept that defective inflammation resolution plays a role in advanced atherosclerosis, and suggest a new form of therapy.

279 citations

Related Papers (5)