scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes

TL;DR: It is suggested that acute stroke activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere within 30–50 min of stroke onset, and not merely loss of activity.
Abstract: Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: There is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rT MS of the left dorsolateral prefrontal cortex (DLPFC).

1,554 citations


Cites background from "Targeted mini-strokes produce chang..."

  • ...While there is evidence that the neural process of interhemispheric balance and rivalry can affect both M1 and S1 (Schambra et al., 2003; Mohajerani et al., 2011), this cannot be generalized to the entire cortex....

    [...]

Journal ArticleDOI
01 Sep 2014-Brain
TL;DR: The development of new imaging techniques allows a better understanding of the complexity of brain organization and it is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion.
Abstract: After a century of false hopes, recent studies have placed the concept of diaschisis at the centre of the understanding of brain function. Originally, the term 'diaschisis' was coined by von Monakow in 1914 to describe the neurophysiological changes that occur distant to a focal brain lesion. In the following decades, this concept triggered widespread clinical interest in an attempt to describe symptoms and signs that the lesion could not fully explain. However, the first imaging studies, in the late 1970s, only partially confirmed the clinical significance of diaschisis. Focal cortical areas of diaschisis (i.e. focal diaschisis) contributed to the clinical deficits after subcortical but only rarely after cortical lesions. For this reason, the concept of diaschisis progressively disappeared from the mainstream of research in clinical neurosciences. Recent evidence has unexpectedly revitalized the notion. The development of new imaging techniques allows a better understanding of the complexity of brain organization. It is now possible to reliably investigate a new type of diaschisis defined as the changes of structural and functional connectivity between brain areas distant to the lesion (i.e. connectional diaschisis). As opposed to focal diaschisis, connectional diaschisis, focusing on determined networks, seems to relate more consistently to the clinical findings. This is particularly true after stroke in the motor and attentional networks. Furthermore, normalization of remote connectivity changes in these networks relates to a better recovery. In the future, to investigate the clinical role of diaschisis, a systematic approach has to be considered. First, emerging imaging and electrophysiological techniques should be used to precisely map and selectively model brain lesions in human and animals studies. Second, the concept of diaschisis must be applied to determine the impact of a focal lesion on new representations of the complexity of brain organization. As an example, the evaluation of remote changes in the structure of the connectome has so far mainly been tested by modelization of focal brain lesions. These changes could now be assessed in patients suffering from focal brain lesions (i.e. connectomal diaschisis). Finally, and of major significance, focal and non-focal neurophysiological changes distant to the lesion should be the target of therapeutic strategies. Neuromodulation using transcranial magnetic stimulation is one of the most promising techniques. It is when this last step will be successful that the concept of diaschisis will gain all the clinical respectability that could not be obtained in decades of research.

605 citations


Cites background from "Targeted mini-strokes produce chang..."

  • ...…an increase in the response by guest on O ctober 7, 2016 http://brain.oxfordjournals.org/ D ow nloaded from to evoked potentials can be observed in the contralesional cortex, without concomitant alterations of metabolism ‘at rest’ in the same areas (Nakashima et al., 1985; Mohajerani et al., 2011)....

    [...]

  • ...missures, as reported in acallosal mice (Mohajerani et al., 2011)....

    [...]

  • ...After stroke, spreading depression and inflammation (Mohajerani et al., 2011) may also play a role in distant increase in excitability in addition to the interruption of transcallosal connections....

    [...]

  • ...This increase in contralateral evoked potentials response is consistent with the definition of diaschisis as it occurs remotely to the lesion within minutes after stroke (Mohajerani et al., 2011), and tends to regress over time....

    [...]

  • ...within minutes after stroke (Mohajerani et al., 2011), and tends to...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a review of studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes.
Abstract: The past 20 years have represented an important period in the development of principles underlying neuroplasticity, especially as they apply to recovery from neurological injury. It is now generally accepted that acquired brain injuries, such as occur in stroke or trauma, initiate a cascade of regenerative events that last for at least several weeks, if not months. Many investigators have pointed out striking parallels between post-injury plasticity and the molecular and cellular events that take place during normal brain development. As evidence for the principles and mechanisms underlying post-injury neuroplasticity has been gleaned from both animal models and human populations, novel approaches to therapeutic intervention have been proposed. One important theme has persisted as the sophistication of clinicians and scientists in their knowledge of neuroplasticity mechanisms has grown: behavioral experience is the most potent modulator of brain plasticity. While there is substantial evidence for this principle in normal, healthy brains, the injured brain is particularly malleable. Based on the quantity and quality of motor experience, the brain can be reshaped after injury in either adaptive or maladaptive ways. This paper reviews selected studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes. In addition, recent studies using new and elegant techniques are providing novel perspectives on the events that take place in the injured brain, providing a real-time window into post-injury plasticity. These new approaches are likely to accelerate the pace of basic research, and provide a wealth of opportunities to translate basic principles into therapeutic methodologies.

411 citations


Cites background from "Targeted mini-strokes produce chang..."

  • ...Several general principles of motor map organization have been demonstrated that are thought to underlie the ability of the motor cortex ability to encode motor skills (Monfils et al., 2005)....

    [...]

Journal ArticleDOI
TL;DR: The surgical procedures required to generate cranial windows for optical access to the cortex of both rats and mice and the use of two-photon microscopy to accurately measure blood flow in individual cortical vessels concurrent with local cellular activity are described.
Abstract: The cerebral vascular system services the constant demand for energy during neuronal activity in the brain. Attempts to delineate the logic of neurovascular coupling have been greatly aided by the advent of two-photon laser scanning microscopy to image both blood flow and the activity of individual cells below the surface of the brain. Here we provide a technical guide to imaging cerebral blood flow in rodents. We describe in detail the surgical procedures required to generate cranial windows for optical access to the cortex of both rats and mice and the use of two-photon microscopy to accurately measure blood flow in individual cortical vessels concurrent with local cellular activity. We further provide examples on how these techniques can be applied to the study of local blood flow regulation and vascular pathologies such as small-scale stroke.

393 citations

Journal ArticleDOI
TL;DR: Control optical methods used to create occlusions of individual penetrating arterioles or venules in rat cortex imply that microinfarcts likely contribute to cognitive decline, and strategies that have received limited success in the treatment of ischemic injury may be successful against the progressive nature of vascular dementia.
Abstract: Microinfarctions are present in the aged and injured human brain. Their clinical relevance is controversial, with postulated sequelae ranging from cognitive sparing to vascular dementia. To address the consequences of microinfarcts, we used controlled optical methods to create occlusions of individual penetrating arterioles or venules in rat cortex. Single microinfarcts, targeted to encompass all or part of a cortical column, impaired performance in a macrovibrissa-based behavioral task. Furthermore, the targeting of multiple vessels resulted in tissue damage that coalesced across cortex, even though the intervening penetrating vessels were acutely patent. Post-occlusion administration of memantine, a glutamate receptor antagonist that reduces cognitive decline in Alzheimer's disease, ameliorated tissue damage and perceptual deficits. Collectively, these data imply that microinfarcts likely contribute to cognitive decline. Strategies that have received limited success in the treatment of ischemic injury, which include therapeutics against excitotoxicity, may be successful against the progressive nature of vascular dementia.

301 citations

References
More filters
Journal ArticleDOI
TL;DR: Evidence from animal models suggests that a time-limited window of neuroplasticity opens following a stroke, during which the greatest gains in recovery occur, and how to optimally engage and modify surviving neuronal networks is studied.
Abstract: Reductions in blood flow to the brain of sufficient duration and extent lead to stroke, which results in damage to neuronal networks and the impairment of sensation, movement or cognition. Evidence from animal models suggests that a time-limited window of neuroplasticity opens following a stroke, during which the greatest gains in recovery occur. Plasticity mechanisms include activity-dependent rewiring and synapse strengthening. The challenge for improving stroke recovery is to understand how to optimally engage and modify surviving neuronal networks, to provide new response strategies that compensate for tissue lost to injury.

1,554 citations


"Targeted mini-strokes produce chang..." refers background in this paper

  • ...D stroke, neurons that are deprived of their normal substrates can show signs of structural damage after as little as 2 min of ischemia (1, 2)....

    [...]

  • ...However, it is also possible to view the stroke recovery process not as a response to damaging events such as apoptosis and necrosis but as a form of compensation (homeostatic plasticity) because of loss of function (1, 65)....

    [...]

  • ...Recovery after a small stroke may involve spared peri-infarct tissue with function similar to the infarct (1, 7)....

    [...]

Journal ArticleDOI
TL;DR: This paper found that after the median nerve was transected and ligated in adult owl and squirrel monkeys, the cortical sectors representing it within skin surface representations in Areas 3b and 1 were completely occupied by 'new' and expanded representations of surrounding skin fields.

948 citations

Journal ArticleDOI
29 Jan 2009-Neuron
TL;DR: This data set provides the first functional description of the excitatory synaptic wiring diagram of a physiologically relevant and anatomically well-defined cortical column at single-cell resolution.

871 citations


"Targeted mini-strokes produce chang..." refers background in this paper

  • ...In addition, recent studies have shown that, although sensory-evoked activity originates mainly at the granular layer of cortex, the activity distributes rapidly among all cortical lamina (25, 26)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the light-gated channel channelrhodopsin-2 (ChR2) is delivered to axons in pyramidal neurons in vivo, and laminar specificity may be identical for local and long-range cortical projections.
Abstract: The functions of cortical areas depend on their inputs and outputs, but the detailed circuits made by long-range projections are unknown. We show that the light-gated channel channelrhodopsin-2 (ChR2) is delivered to axons in pyramidal neurons in vivo. In brain slices from ChR2-expressing mice, photostimulation of ChR2-positive axons can be transduced reliably into single action potentials. Combining photostimulation with whole-cell recordings of synaptic currents makes it possible to map circuits between presynaptic neurons, defined by ChR2 expression, and postsynaptic neurons, defined by targeted patching. We applied this technique, ChR2-assisted circuit mapping (CRACM), to map long-range callosal projections from layer (L) 2/3 of the somatosensory cortex. L2/3 axons connect with neurons in L5, L2/3 and L6, but not L4, in both ipsilateral and contralateral cortex. In both hemispheres the L2/3-to-L5 projection is stronger than the L2/3-to-L2/3 projection. Our results suggest that laminar specificity may be identical for local and long-range cortical projections.

859 citations


"Targeted mini-strokes produce chang..." refers background in this paper

  • ...The presence of ipsilateral responses (measured in the left hemisphere to left forepaw stimulation) in the animal with a stroke on the right side was surprising, because the contralateral (right) forelimb area was ischemic and could not relay this signal across the corpus callosumas expected innaïveanimals (28, 29, 31)....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that substantial functional reorganization occurs in primary motor cortex of adult primates following a focal ischemic infarct, but at least in the absence of postinfarct training, the movements formerly represented in the infarCTed zone do not reappear in adjacent cortical regions.
Abstract: 1. Intracortical microstimulation (ICMS) techniques were used to derive detailed maps of distal forelimb movement representations in primary motor cortex (area 4) of adult squirrel monkeys before and a few months after a focal ischemic infarct. 2. Infarcts caused a marked but transient deficit in use of the contralateral hand, as evidenced by increased use of the ipsilateral hand, and reduced performance on a task requiring skilled digit use. 3. Infarcts resulted in a widespread reduction in the areal extent of digit representations adjacent to the lesion, and apparent increases in adjacent proximal representations. 4. We conclude that substantial functional reorganization occurs in primary motor cortex of adult primates following a focal ischemic infarct, but at least in the absence of postinfarct training, the movements formerly represented in the infarcted zone do not reappear in adjacent cortical regions.

789 citations


"Targeted mini-strokes produce chang..." refers result in this paper

  • ...The appearance of new structural connections that form over weeks during recovery from stroke is supported by data from a number of different studies (7, 14, 17, 63, 64)....

    [...]