scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Targeting the Thioredoxin System for Cancer Therapy.

Junmin Zhang1, Xinming Li1, Xiao Han1, Ruijuan Liu1, Jianguo Fang1 
01 Sep 2017-Trends in Pharmacological Sciences (Trends Pharmacol Sci)-Vol. 38, Iss: 9, pp 794-808
TL;DR: This review discusses the structural details of TrxR, the functions of the Trx system, and the rational of targetingtrxR/Trx for cancer treatment, and highlights small-molecule TrXR/trx inhibitors that have potential anticancer activity and review their mechanisms of action.
About: This article is published in Trends in Pharmacological Sciences.The article was published on 2017-09-01. It has received 276 citations till now. The article focuses on the topics: Thioredoxin.
Citations
More filters
Journal ArticleDOI
13 Nov 2019
TL;DR: The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously.
Abstract: Reactive oxygen species (ROS) play a pivotal role in biological processes and continuous ROS production in normal cells is controlled by the appropriate regulation between the silver lining of low and high ROS concentration mediated effects. Interestingly, ROS also dynamically influences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis, and survival at different concentrations. At moderate concentration, ROS activates the cancer cell survival signaling cascade involving mitogen-activated protein kinase/extracellular signal-regulated protein kinases 1/2 (MAPK/ERK1/2), p38, c-Jun N-terminal kinase (JNK), and phosphoinositide-3-kinase/ protein kinase B (PI3K/Akt), which in turn activate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metalloproteinases (MMPs), and vascular endothelial growth factor (VEGF). At high concentrations, ROS can cause cancer cell apoptosis. Hence, it critically depends upon the ROS levels, to either augment tumorigenesis or lead to apoptosis. The major issue is targeting the dual actions of ROS effectively with respect to the concentration bias, which needs to be monitored carefully to impede tumor angiogenesis and metastasis for ROS to serve as potential therapeutic targets exogenously/endogenously. Overall, additional research is required to comprehend the potential of ROS as an effective anti-tumor modality and therapeutic target for treating malignancies.

539 citations

Journal ArticleDOI
TL;DR: This review has endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many Chemotherapeutic regimens.
Abstract: While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we a...

389 citations

Journal ArticleDOI
TL;DR: The critical and targetable redox-regulating enzymes, including mitochondrial electron transport chain complexes, NADPH oxidases (NOXs), enzymes related to glutathione metabolism, glutamate/cystine antiporter xCT, thioredoxin reductases (TrxRs), nuclear factor erythroid 2-related factor 2 (Nrf2), and their roles in regulating cellular ROS levels, drug resistance as well as their clinical significance are discussed.

361 citations

Journal ArticleDOI
TL;DR: The latest findings on the intricate relationship between mitochondrial dynamics and ROS production are reviewed, focusing mainly on its role in malignant disease.
Abstract: Mitochondria are organelles with a highly dynamic ultrastructure maintained by a delicate equilibrium between its fission and fusion rates. Understanding the factors influencing this balance is important as perturbations to mitochondrial dynamics can result in pathological states. As a terminal site of nutrient oxidation for the cell, mitochondrial powerhouses harness energy in the form of ATP in a process driven by the electron transport chain. Contemporaneously, electrons translocated within the electron transport chain undergo spontaneous side reactions with oxygen, giving rise to superoxide and a variety of other downstream reactive oxygen species (ROS). Mitochondrially-derived ROS can mediate redox signaling or, in excess, cause cell injury and even cell death. Recent evidence suggests that mitochondrial ultrastructure is tightly coupled to ROS generation depending on the physiological status of the cell. Yet, the mechanism by which changes in mitochondrial shape modulate mitochondrial function and redox homeostasis is less clear. Aberrant mitochondrial morphology may lead to enhanced ROS formation, which, in turn, may deteriorate mitochondrial health and further exacerbate oxidative stress in a self-perpetuating vicious cycle. Here, we review the latest findings on the intricate relationship between mitochondrial dynamics and ROS production, focusing mainly on its role in malignant disease.

323 citations


Cites background from "Targeting the Thioredoxin System fo..."

  • ...Other H2O2 scavengers include catalase, which is mainly located in the peroxisomes where it converts H2O2 to water and oxygen [103], and the peroxiredoxin (PRX) system [104], relying upon the thioredoxin (TRX) and thioredoxin reductase catalytic cycle [105,106]....

    [...]

  • ...thioredoxin reductase catalytic cycle [105,106]....

    [...]

Journal ArticleDOI
TL;DR: The metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions as discussed by the authors.
Abstract: Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.

199 citations

References
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI

7,570 citations


"Targeting the Thioredoxin System fo..." refers background in this paper

  • ...Rationale for Targeting TrxR/Trx in Cancer Hanahan and Weinberg described the hallmarks of cancer in their classic article [40], suggesting that at least several essential alterations must take place for tumor development, such as...

    [...]

Journal ArticleDOI
TL;DR: It is argued that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
Abstract: Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.

4,369 citations


"Targeting the Thioredoxin System fo..." refers background in this paper

  • ...The elevated ROS content is essential for maintaining tumor phenotypes, but also renders cancer cells vulnerable to oxidative stress [5]....

    [...]

  • ...This high ROS content also renders cancer cells more sensitive to ROS than non-malignant cells, which sets the tone for the ROS-mediated cancer therapy [5,6,8,11,54]....

    [...]

Journal ArticleDOI
TL;DR: It is argued that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.

4,297 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations


"Targeting the Thioredoxin System fo..." refers background in this paper

  • ...The antioxidant function of the Trx system is beneficial for cancer cell survival because cancer cells usually harbor increased level of ROS compared to normal cells [52,53]....

    [...]