scispace - formally typeset
Search or ask a question

TCP Congestion Control

01 Apr 1999-Vol. 2581, pp 1-14
TL;DR: This document defines TCP's four intertwined congestion control algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery, as well as discussing various acknowledgment generation methods.
Abstract: This document defines TCP's four intertwined congestion control algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery. In addition, the document specifies how TCP should begin transmission after a relatively long idle period, as well as discussing various acknowledgment generation methods.

Content maybe subject to copyright    Report

Citations
More filters
01 Oct 2000
TL;DR: This document describes the Stream Control Transmission Protocol (SCTP), which is designed to transport PSTN signaling messages over IP networks, but is capable of broader applications.
Abstract: This document describes the Stream Control Transmission Protocol (SCTP). SCTP is designed to transport PSTN signaling messages over IP networks, but is capable of broader applications.

2,270 citations

01 Apr 2004
TL;DR: The purpose of this document is to advance NewReno TCP's Fast Retransmit and Fast Recovery algorithms in RFC 2582 from Experimental to Standards Track status.
Abstract: The purpose of this document is to advance NewReno TCP's Fast Retransmit and Fast Recovery algorithms in RFC 2582 from Experimental to Standards Track status.

1,602 citations

Book
01 Jan 2000
TL;DR: TCP/IP Illustrated, Volume 1 is a complete and detailed guide to the entire TCP/IP protocol suite - with an important difference from other books on the subject: rather than just describing what the RFCs say the protocol suite should do, this unique book uses a popular diagnostic tool so you may actually watch the protocols in action.
Abstract: TCP/IP Illustrated, Volume 1 is a complete and detailed guide to the entire TCP/IP protocol suite - with an important difference from other books on the subject. Rather than just describing what the RFCs say the protocol suite should do, this unique book uses a popular diagnostic tool so you may actually watch the protocols in action.By forcing various conditions to occur - such as connection establishment, timeout and retransmission, and fragmentation - and then displaying the results, TCP/IP Illustrated gives you a much greater understanding of these concepts than words alone could provide. Whether you are new to TCP/IP or you have read other books on the subject, you will come away with an increased understanding of how and why TCP/IP works the way it does, as well as enhanced skill at developing aplications that run over TCP/IP.

1,384 citations

Journal ArticleDOI
TL;DR: FAST TCP is described, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation, and its equilibrium and stability properties are characterized.
Abstract: We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness

1,214 citations


Additional excerpts

  • ..., [1], [14], [18], [21], [47], [58]....

    [...]

Proceedings ArticleDOI
07 Aug 2017
TL;DR: P Pensieve is proposed, a system that generates ABR algorithms using reinforcement learning (RL), and outperforms the best state-of-the-art scheme, with improvements in average QoE of 12%--25%.
Abstract: Client-side video players employ adaptive bitrate (ABR) algorithms to optimize user quality of experience (QoE). Despite the abundance of recently proposed schemes, state-of-the-art ABR algorithms suffer from a key limitation: they use fixed control rules based on simplified or inaccurate models of the deployment environment. As a result, existing schemes inevitably fail to achieve optimal performance across a broad set of network conditions and QoE objectives.We propose Pensieve, a system that generates ABR algorithms using reinforcement learning (RL). Pensieve trains a neural network model that selects bitrates for future video chunks based on observations collected by client video players. Pensieve does not rely on pre-programmed models or assumptions about the environment. Instead, it learns to make ABR decisions solely through observations of the resulting performance of past decisions. As a result, Pensieve automatically learns ABR algorithms that adapt to a wide range of environments and QoE metrics. We compare Pensieve to state-of-the-art ABR algorithms using trace-driven and real world experiments spanning a wide variety of network conditions, QoE metrics, and video properties. In all considered scenarios, Pensieve outperforms the best state-of-the-art scheme, with improvements in average QoE of 12%--25%. Pensieve also generalizes well, outperforming existing schemes even on networks for which it was not explicitly trained.

946 citations

References
More filters
Journal ArticleDOI
TL;DR: Red gateways are designed to accompany a transport-layer congestion control protocol such as TCP and have no bias against bursty traffic and avoids the global synchronization of many connections decreasing their window at the same time.
Abstract: The authors present random early detection (RED) gateways for congestion avoidance in packet-switched networks. The gateway detects incipient congestion by computing the average queue size. The gateway could notify connections of congestion either by dropping packets arriving at the gateway or by setting a bit in packet headers. When the average queue size exceeds a present threshold, the gateway drops or marks each arriving packet with a certain probability, where the exact probability is a function of the average queue size. RED gateways keep the average queue size low while allowing occasional bursts of packets in the queue. During congestion, the probability that the gateway notifies a particular connection to reduce its window is roughly proportional to that connection's share of the bandwidth through the gateway. RED gateways are designed to accompany a transport-layer congestion control protocol such as TCP. The RED gateway has no bias against bursty traffic and avoids the global synchronization of many connections decreasing their window at the same time. Simulations of a TCP/IP network are used to illustrate the performance of RED gateways. >

6,198 citations

Journal ArticleDOI
01 Aug 1988
TL;DR: The measurements and the reports of beta testers suggest that the final product is fairly good at dealing with congested conditions on the Internet, and an algorithm recently developed by Phil Karn of Bell Communications Research is described in a soon-to-be-published RFC.
Abstract: In October of '86, the Internet had the first of what became a series of 'congestion collapses'. During this period, the data throughput from LBL to UC Berkeley (sites separated by 400 yards and three IMP hops) dropped from 32 Kbps to 40 bps. Mike Karels1 and I were fascinated by this sudden factor-of-thousand drop in bandwidth and embarked on an investigation of why things had gotten so bad. We wondered, in particular, if the 4.3BSD (Berkeley UNIX) TCP was mis-behaving or if it could be tuned to work better under abysmal network conditions. The answer to both of these questions was “yes”.Since that time, we have put seven new algorithms into the 4BSD TCP: round-trip-time variance estimationexponential retransmit timer backoffslow-startmore aggressive receiver ack policydynamic window sizing on congestionKarn's clamped retransmit backofffast retransmit Our measurements and the reports of beta testers suggest that the final product is fairly good at dealing with congested conditions on the Internet.This paper is a brief description of (i) - (v) and the rationale behind them. (vi) is an algorithm recently developed by Phil Karn of Bell Communications Research, described in [KP87]. (viii) is described in a soon-to-be-published RFC.Algorithms (i) - (v) spring from one observation: The flow on a TCP connection (or ISO TP-4 or Xerox NS SPP connection) should obey a 'conservation of packets' principle. And, if this principle were obeyed, congestion collapse would become the exception rather than the rule. Thus congestion control involves finding places that violate conservation and fixing them.By 'conservation of packets' I mean that for a connection 'in equilibrium', i.e., running stably with a full window of data in transit, the packet flow is what a physicist would call 'conservative': A new packet isn't put into the network until an old packet leaves. The physics of flow predicts that systems with this property should be robust in the face of congestion. Observation of the Internet suggests that it was not particularly robust. Why the discrepancy?There are only three ways for packet conservation to fail: The connection doesn't get to equilibrium, orA sender injects a new packet before an old packet has exited, orThe equilibrium can't be reached because of resource limits along the path. In the following sections, we treat each of these in turn.

5,620 citations

01 Mar 1997
TL;DR: This document defines these words as they should be interpreted in IETF documents as well as providing guidelines for authors to incorporate this phrase near the beginning of their document.
Abstract: In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. Authors who follow these guidelines should incorporate this phrase near the beginning of their document:

3,501 citations

01 Sep 1981

3,411 citations

Journal ArticleDOI
TL;DR: It is argued that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion, and several general approaches are discussed for identifying those flows suitable for bandwidth regulation.
Abstract: This paper considers the potentially negative impacts of an increasing deployment of non-congestion-controlled best-effort traffic on the Internet. These negative impacts range from extreme unfairness against competing TCP traffic to the potential for congestion collapse. To promote the inclusion of end-to-end congestion control in the design of future protocols using best-effort traffic, we argue that router mechanisms are needed to identify and restrict the bandwidth of selected high-bandwidth best-effort flows in times of congestion. The paper discusses several general approaches for identifying those flows suitable for bandwidth regulation. These approaches are to identify a high-bandwidth flow in times of congestion as unresponsive, "not TCP-friendly", or simply using disproportionate bandwidth. A flow that is not "TCP-friendly" is one whose long-term arrival rate exceeds that of any conformant TCP in the same circumstances. An unresponsive flow is one failing to reduce its offered load at a router in response to an increased packet drop rate, and a disproportionate-bandwidth flow is one that uses considerably more bandwidth than other flows in a time of congestion.

1,787 citations


"TCP Congestion Control" refers background in this paper

  • ...1 TCP Congestion Control Yang Richard Yang 9/24/2001 2 Review r End-to-end routing behavior m exponential sampling r End-to-end measurement of delay, bottleneck bandwidth, packet size, and loss m simple probe packets m derive round-trip delay and bottleneck bandwidth from phase plot m derive…...

    [...]