scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Techno-economic analysis of a trigeneration system based on biomass gasification

TL;DR: In this article, the authors present a case study that assesses the potential of the use of biomass gasification in an existing Portuguese trigeneration natural gas-fired plant located in Lisboa.
Abstract: Biomass is one of the renewable energy sources (RES) with highest potential to contribute to the world's energy needs and can thereby play a key role in the path towards smart energy systems. Smart energy systems aim to integrate all energy sectors to increase the penetration of RES in the energy supply. Biomass gasification is a key technology to fulfil the goal of sustainable RES systems. Its main product (syngas) can be used as fuel, in various conversion technologies, to produce different products, including electricity, heat, cooling, biofuels and chemicals, which makes this technology an important tool for the energy system flexibility. Initially, the present manuscript reviews the relevant studies on the use of biomass gasification in trigeneration and polygeneration systems. Subsequently, it presents a case study that assesses the potential of the use of biomass gasification in an existing Portuguese trigeneration natural gas-fired plant located in Lisboa. The literature review revealed that most of the studies analysed are based on modelling data and not on experimental and/or pilot installations data. These studies show the environmental and energy added value of this type of system but stress the system's complexity and high investment costs. As for the case study, all scenarios considered show a negative net present value; nevertheless, the decrease of the biomass cost or the increase of the natural gas cost can turn financially feasible some scenarios.
Citations
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the research and development on the effects of catalysts on the thermochemical conversion of biomass to determine the progress of catalytic thermochemical transformation processes is presented in this article.
Abstract: The increasing demand for energy and diminishing sources of fossil fuels have called for the discovery of new energy sources. The effective energy conversion process of biomass is able to fulfill energy needs. Among the advanced biomass conversion technologies, thermochemical processes hold considerable potential approaches and needed for optimization. Thus, this study presents a comprehensive review of the research and development on the effects of catalysts on the thermochemical conversion of biomass to determine the progress of catalytic thermochemical conversion processes. The effects of catalysts on torrefaction, pyrolysis, hydrothermal liquefaction, and gasification are highlighted. Aspects related to reaction conditions, reactor types, and products are discussed comprehensively with the reaction mechanisms involved in the catalytic effects. Hydrogenation and hydrodeoxygenation can occur in the presence of zeolite catalysts during fast pyrolysis while producing highly aromatic bio-oil. A heterogeneous catalyst in liquefaction increases the hydrocarbon content and decreases viscosity, acid value, and oxygenated compounds in the bio-oil. Thus, expanding and enhancing knowledge about catalyst utilization in the thermochemical conversion technologies of biomass will play an important role in the generation of renewable and carbon-neutral fuels.

260 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a combined cooling heating and power (CCHP) system based on solar thermal biomass gasification, and presented thermodynamic analyses to effectively improve the utilization of distributed renewable energy sources.

60 citations

Journal ArticleDOI
TL;DR: In this paper, an energy level based exergoeconomic evaluation is performed for a novel biomass and natural gas fired polygeneration system of electricity, hot water, chilled water and hydrogen production.

47 citations

Journal ArticleDOI
TL;DR: In this article, an innovative modelling approach for the design of biomass-based, solar-assisted combined cooling, heating, and power (CCHP) and heat pump (HP) systems for various climate scenarios is proposed.

39 citations

References
More filters
01 Jan 2015
TL;DR: The work of the IPCC Working Group III 5th Assessment report as mentioned in this paper is a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change, which has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.
Abstract: The talk with present the key results of the IPCC Working Group III 5th assessment report. Concluding four years of intense scientific collaboration by hundreds of authors from around the world, the report responds to the request of the world's governments for a comprehensive, objective and policy neutral assessment of the current scientific knowledge on mitigating climate change. The report has been extensively reviewed by experts and governments to ensure quality and comprehensiveness.

3,224 citations

Journal ArticleDOI
TL;DR: The conversion technologies for utilizing biomass can be separated into four basic categories: direct combustion processes, thermochemical processes, biochemical processes and agrochemical processes as discussed by the authors, which can be subdivided into gasification, pyrolysis, supercritical fluid extraction and direct liquefaction.

1,578 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the different computer tools that can be used to analyse the integration of renewable energy is presented, and the results in this paper provide the information necessary to identify a suitable energy tool for analysing the integration into various energy-systems under different objectives.

1,480 citations

Journal ArticleDOI
TL;DR: In this paper, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass and comparison between biomass and other fuels.
Abstract: Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40–50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO 2 and NO x emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

1,293 citations


"Techno-economic analysis of a trige..." refers background in this paper

  • ...All in all, there is no net addition of CO2, this is known as carbon cycle [12]....

    [...]

Journal ArticleDOI
01 May 2009-Energy
TL;DR: In this paper, the authors present the methodology and results of the overall energy system analysis of a 100% renewable energy system, which includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance the electricity supply and demand.

1,032 citations