scispace - formally typeset
Open AccessJournal ArticleDOI

Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge

Punya Mishra, +1 more
- 01 Jun 2006 - 
- Vol. 108, Iss: 6, pp 1017-1054
Reads0
Chats0
TLDR
In this paper, the authors propose a conceptual framework for educational technology by building on Shulman's formulation of pedagogical content knowledge and extend it to the phenomenon of teachers integrating technology into their pedagogy.
Abstract
Research in the area of educational technology has often been critiqued for a lack of theoretical grounding. In this article we propose a conceptual framework for educational technology by building on Shulman’s formulation of ‘‘pedagogical content knowledge’’ and extend it to the phenomenon of teachers integrating technology into their pedagogy. This framework is the result of 5 years of work on a program of research focused on teacher professional development and faculty development in higher education. It attempts to capture some of the essential qualities of teacher knowledge required for technology integration in teaching, while addressing the complex, multifaceted, and situated nature of this knowledge. We argue, briefly, that thoughtful pedagogical uses of technology require the development of a complex, situated form of knowledge that we call Technological Pedagogical Content Knowledge (TPCK). In doing so, we posit the complex roles of, and interplay among, three main components of learning environments: content, pedagogy, and technology. We argue that this model has much to offer to discussions of technology integration at multiple levels: theoretical, pedagogical, and methodological. In this article, we describe the theory behind our framework, provide examples of our teaching approach based upon the framework, and illustrate the methodological contributions that have resulted from this work.

read more

Content maybe subject to copyright    Report

Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge?
Contemporary Issues in Technology and Teacher Education, 9(1), 60-70.
60
Editors’ Note: For the benefit of readers who are unfamiliar with the notion of
technology, pedagogy, and content knowledge (TPACK), we offer the following condensed
and updated depiction by Mishra and Koehler (2007), which was presented originally at
the annual conference of the Society for Information Technology and Teacher Education
in 2007.
Judi Harris & Matt Koehler
Special Issue Guest Editors
What Is Technological Pedagogical Content
Knowledge?
Matthew J. Koehler and Punya Mishra
Michigan State University
Abstract
This paper describes a framework for teacher knowledge for technology
integration called technological pedagogical content knowledge (originally
TPCK, now known as TPACK, or technology, pedagogy, and content
knowledge). This framework builds on Lee Shulman’s construct of
pedagogical content knowledge (PCK) to include technology knowledge. The
development of TPACK by teachers is critical to effective teaching with
technology. The paper begins with a brief introduction to the complex, ill-
structured nature of teaching. The nature of technologies (both analog and
digital) is considered, as well as how the inclusion of technology in pedagogy
further complicates teaching. The TPACK framework for teacher knowledge
is described in detail, as a complex interaction among three bodies of
knowledge: Content, pedagogy, and technology. The interaction of these
bodies of knowledge, both theoretically and in practice, produces the types
of flexible knowledge needed to successfully integrate technology use into
teaching.

Contemporary Issues in Technology and Teacher Education, 9(1)
61
As educators know, teaching is a complicated practice that requires an interweaving of
many kinds of specialized knowledge. In this way, teaching is an example of an ill-
structured discipline, requiring teachers to apply complex knowledge structures across
different cases and contexts (Mishra, Spiro, & Feltovich, 1996; Spiro & Jehng, 1990).
Teachers practice their craft in highly complex, dynamic classroom contexts (Leinhardt &
Greeno, 1986) that require them constantly to shift and evolve their understanding. Thus,
effective teaching depends on flexible access to rich, well-organized and integrated
knowledge from different domains (Glaser, 1984; Putnam & Borko, 2000; Shulman,
1986, 1987), including knowledge of student thinking and learning, knowledge of subject
matter, and increasingly, knowledge of technology.
The Challenges of Teaching With Technology
Teaching with technology is complicated further considering the challenges newer
technologies present to teachers. In our work, the word technology applies equally to
analog and digital, as well as new and old, technologies. As a matter of practical
significance, however, most of the technologies under consideration in current literature
are newer and digital and have some inherent properties that make applying them in
straightforward ways difficult.
Most traditional pedagogical technologies are characterized by specificity (a pencil is for
writing, while a microscope is for viewing small objects); stability (pencils, pendulums,
and chalkboards have not changed a great deal over time); and transparency of function
(the inner workings of the pencil or the pendulum are simple and directly related to their
function) (Simon, 1969). Over time, these technologies achieve a transparency of
perception (Bruce & Hogan, 1998); they become commonplace and, in most cases, are not
even considered to be technologies. Digital technologies—such as computers, handheld
devices, and software applications—by contrast, are protean (usable in many different
ways; Papert, 1980); unstable (rapidly changing); and opaque (the inner workings are
hidden from users; Turkle, 1995).On an academic level, it is easy to argue that a pencil
and a software simulation are both technologies. The latter, however, is qualitatively
different in that its functioning is more opaque to teachers and offers fundamentally less
stability than more traditional technologies. By their very nature, newer digital
technologies, which are protean, unstable, and opaque, present new challenges to
teachers who are struggling to use more technology in their teaching.
Also complicating teaching with technology is an understanding that technologies are
neither neutral nor unbiased. Rather, particular technologies have their own propensities,
potentials, affordances, and constraints that make them more suitable for certain tasks
than others (Bromley, 1998; Bruce, 1993; Koehler & Mishra, 2008). Using email to
communicate, for example, affords (makes possible and supports) asynchronous
communication and easy storage of exchanges. Email does not afford synchronous
communication in the way that a phone call, a face-to-face conversation, or instant
messaging does. Nor does email afford the conveyance of subtleties of tone, intent, or
mood possible with face-to-face communication. Understanding how these affordances
and constraints of specific technologies influence what teachers do in their classrooms is
not straightforward and may require rethinking teacher education and teacher
professional development.
Social and contextual factors also complicate the relationships between teaching and
technology. Social and institutional contexts are often unsupportive of teachers’ efforts to
integrate technology use into their work. Teachers often have inadequate (or

Contemporary Issues in Technology and Teacher Education, 9(1)
62
inappropriate) experience with using digital technologies for teaching and learning. Many
teachers earned degrees at a time when educational technology was at a very different
stage of development than it is today. It is, thus, not surprising that they do not consider
themselves sufficiently prepared to use technology in the classroom and often do not
appreciate its value or relevance to teaching and learning. Acquiring a new knowledge
base and skill set can be challenging, particularly if it is a time-intensive activity that must
fit into a busy schedule. Moreover, this knowledge is unlikely to be used unless teachers
can conceive of technology uses that are consistent with their existing pedagogical beliefs
(Ertmer, 2005). Furthermore, teachers have often been provided with inadequate
training for this task. Many approaches to teachers’ professional development offer a one-
size-fits-all approach to technology integration when, in fact, teachers operate in diverse
contexts of teaching and learning.
An Approach to Thinking About Technology Integration
Faced with these challenges, how can teachers integrate technology into their teaching?
An approach is needed that treats teaching as an interaction between what teachers know
and how they apply what they know in the unique circumstances or contexts within their
classrooms. There is no “one best way” to integrate technology into curriculum. Rather,
integration efforts should be creatively designed or structured for particular subject
matter ideas in specific classroom contexts. Honoring the idea that teaching with
technology is a complex, ill-structured task, we propose that understanding approaches to
successful technology integration requires educators to develop new ways of
comprehending and accommodating this complexity.
At the heart of good teaching with technology are three core components: content,
pedagogy, and technology, plus the relationships among and between them. The
interactions between and among the three components, playing out differently across
diverse contexts, account for the wide variations seen in the extent and quality of
educational technology integration. These three knowledge bases (content, pedagogy, and
technology) form the core of the technology, pedagogy, and content knowledge (TPACK)
framework. An overview of the framework is provided in the following section, though
more detailed descriptions may be found elsewhere (e.g., Koehler & 2008; Mishra &
Koehler, 2006). This perspective is consistent with that of other researchers and
approaches that have attempted to extend Shulman’s idea of pedagogical content
knowledge (PCK) to include educational technology. (A comprehensive list of such
approaches can be found at http://www.tpck.org
/.)
The TPACK Framework
The TPACK framework builds on Shulman’s (1987, 1986) descriptions of PCK to describe
how teachers’ understanding of educational technologies and PCK interact with one
another to produce effective teaching with technology. Other authors have discussed
similar ideas, though often using different labeling schemes. The conception of TPACK
described here has developed over time and through a series of publications, with the
most complete descriptions of the framework found in Mishra and Koehler (2006) and
Koehler and Mishra (2008).
In this model (see Figure 1), there are three main components of teachers’ knowledge:
content, pedagogy, and technology. Equally important to the model are the interactions
between and among these bodies of knowledge, represented as PCK, TCK (technological
content knowledge), TPK (technological pedagogicalknowledge), and TPACK.

Contemporary Issues in Technology and Teacher Education, 9(1)
63
Figure 1. The TPACK framework and its knowledge
components.
Content Knowledge
Content knowledge (CK) is teachers’ knowledge about the subject matter to be learned or
taught. The content to be covered in middle school science or history is different from the
content to be covered in an undergraduate course on art appreciation or a graduate
seminar on astrophysics. Knowledge of content is of critical importance for teachers. As
Shulman (1986) noted, this knowledge would include knowledge of concepts, theories,
ideas, organizational frameworks, knowledge of evidence and proof, as well as established
practices and approaches toward developing such knowledge. Knowledge and the nature
of inquiry differ greatly between fields, and teachers should understand the deeper
knowledge fundamentals of the disciplines in which they teach. In the case of science, for
example, this would include knowledge of scientific facts and theories, the scientific
method, and evidence-based reasoning. In the case of art appreciation, such knowledge
would include knowledge of art history, famous paintings, sculptures, artists and their
historical contexts, as well as knowledge of aesthetic and psychological theories for
evaluating art.
The cost of not having a comprehensive base of content knowledge can be prohibitive; for
example, students can receive incorrect information and develop misconceptions about
the content area (National Research Council, 2000; Pfundt, & Duit, 2000). Yet content
knowledge, in and of itself, is an ill-structured domain, and as the culture wars
(Zimmerman, 2002), the Great Books controversies (Bloom, 1987; Casement, 1997;
Levine, 1996), and court battles over the teaching of evolution (Pennock, 2001)
demonstrate, issues relating to curriculum content can be areas of significant contention
and disagreement.

Contemporary Issues in Technology and Teacher Education, 9(1)
64
Pedagogical Knowledge
Pedagogical knowledge (PK) is teachers’ deep knowledge about the processes and
practices or methods of teaching and learning. They encompass, among other things,
overall educational purposes, values, and aims. This generic form of knowledge applies to
understanding how students learn, general classroom management skills, lesson
planning, and student assessment. It includes knowledge about techniques or methods
used in the classroom; the nature of the target audience; and strategies for evaluating
student understanding. A teacher with deep pedagogical knowledge understands how
students construct knowledge and acquire skills and how they develop habits of mind and
positive dispositions toward learning. As such, pedagogical knowledge requires an
understanding of cognitive, social, and developmental theories of learning and how they
apply to students in the classroom.
Pedagogical Content Knowledge
PCK is consistent with and similar to Shulman’s idea of knowledge of pedagogy that is
applicable to the teaching of specific content. Central to Shulman’s conceptualization of
PCK is the notion of the transformation of the subject matter for teaching. Specifically,
according to Shulman (1986), this transformation occurs as the teacher interprets the
subject matter, finds multiple ways to represent it, and adapts and tailors the
instructional materials to alternative conceptions and students’ prior knowledge. PCK
covers the core business of teaching, learning, curriculum, assessment and reporting,
such as the conditions that promote learning and the links among curriculum,
assessment, and pedagogy. An awareness of common misconceptions and ways of looking
at them, the importance of forging connections among different content-based ideas,
students’ prior knowledge, alternative teaching strategies, and the flexibility that comes
from exploring alternative ways of looking at the same idea or problem are all essential
for effective teaching.
Technology Knowledge
Technology knowledge (TK) is always in a state of flux—more so than the other two core
knowledge domains in the TPACK framework (pedagogy and content). Thus, defining it is
notoriously difficult. Any definition of technology knowledge is in danger of becoming
outdated by the time this text has been published. That said, certain ways of thinking
about and working with technology can apply to all technology tools and resources.
The definition of TK used in the TPACK framework is close to that of Fluency of
Information Technology (FITness), as proposed by the Committee of Information
Technology Literacy of the National Research Council (NRC, 1999). They argue that
FITness goes beyond traditional notions of computer literacy to require that persons
understand information technology broadly enough to apply it productively at work and
in their everyday lives, to recognize when information technology can assist or impede the
achievement of a goal, and to continually adapt to changes in information technology.
FITness, therefore, requires a deeper, more essential understanding and mastery of
information technology for information processing, communication, and problem solving
than does the traditional definition of computer literacy. Acquiring TK in this manner
enables a person to accomplish a variety of different tasks using information technology
and to develop different ways of accomplishing a given task. This conceptualization of TK
does not posit an “end state,” but rather sees it developmentally, as evolving over a
lifetime of generative, open-ended interaction with technology.

Citations
More filters
Journal Article

Experience and Education.

TL;DR: One of the books that can be recommended for new readers is experience and education as mentioned in this paper, which is not kind of difficult book to read and can be read and understand by the new readers.
Journal ArticleDOI

Improving Impact Studies of Teachers’ Professional Development: Toward Better Conceptualizations and Measures

TL;DR: The authors argue that the use of a common conceptual framework would elevate the quality of professional development studies and subsequently the general understanding of how best to shape and implement teacher learning opportunities for the maximum benefit of both teachers and students.
Journal Article

How to ... be a reflective practitioner.

Hoban
- 01 Jan 2004 - 
Journal ArticleDOI

Teacher Technology Change: How Knowledge, Confidence, Beliefs, and Culture Intersect

TL;DR: In this article, the authors examine technology integration through the lens of the teacher as an agent of change: What are the necessary characteristics, or qualities, that enable teachers to leverage technology resources as meaningful pedagogical tools?
References
More filters
Book

The Ecological Approach to Visual Perception

TL;DR: The relationship between Stimulation and Stimulus Information for visual perception is discussed in detail in this article, where the authors also present experimental evidence for direct perception of motion in the world and movement of the self.
Journal ArticleDOI

Those Who Understand: Knowledge Growth in Teaching

TL;DR: In this paper, Shulman observa la historia de evaluaciones docentes, noting that the evaluación docente parecia preocuparse tanto por los conocimientos, como el siglo anterior se preoccupaba por la pedagogia.
Journal ArticleDOI

Situated Cognition and the Culture of Learning

TL;DR: Collins, Brown, and Newman as mentioned in this paper argue that knowledge is situated, being in part a product of the activity, context, and culture in which it is developed and used, and propose cognitive apprenticeship as an alternative to conventional practices.

CONOCIMIENTO Y ENSEÑANZA: FUNDAMENTOS DE LA NUEVA REFORMA 1 Knowledge and Teaching: Foundations of the New Reform

TL;DR: Lee S. Shulman as mentioned in this paper builds his foundation for teachi ng reform on an idea of teaching that emphasizes comprension and reasoning, transformation and reflection, and argues that this emphasis is justified by the resoluteness with which research and policy have so blatantly ignored those aspects of teaching in the past.
Journal ArticleDOI

Knowledge and Teaching: Foundations of the New Reform

TL;DR: Lee S. Shulman as mentioned in this paper builds his foundation for teaching reform on an idea of teaching that emphasizes comprehension and reasoning, transformation and reflection. "This emphasis is justified," he writes,...
Related Papers (5)