scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon

TL;DR: In this paper, the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al2O3 and water-CuO mixtures, was investigated experimentally using a piston-type calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber.
About: This article is published in International Journal of Heat and Fluid Flow.The article was published on 2007-12-01. It has received 876 citations till now. The article focuses on the topics: Nanofluid & Viscometer.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.

1,069 citations

Journal ArticleDOI
TL;DR: In this article, the stability of nanofluids is discussed as it has a major role in heat transfer enhancement for further possible applications, and general stabilization methods as well as various types of instruments for stability inspection.

948 citations

Journal ArticleDOI
TL;DR: A critical synthesis of the variants within the thermophysical properties of nanofluids is presented in this article, where the experimental results for the effective thermal conductivity and viscosity reported by several authors are in disagreement.

943 citations

Journal ArticleDOI
TL;DR: In this article, the effects of particle volume fraction, temperature and particle size on thermal conductivity of alumina/water and copper oxide/water nanofluids were investigated.

886 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent development in research on synthesis and characterization of stationary nanofluids and try to find some challenging issues that need to be solved for future research.

732 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

4,634 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations

Journal ArticleDOI
TL;DR: In this paper, an expression for the viscosity of solutions and suspensions of finite concentration is derived by considering the effect of the addition of one solute-molecule to an existing solution, which is considered as a continuous medium.
Abstract: An expression for the viscosity of solutions and suspensions of finite concentration is derived by considering the effect of the addition of one solute‐molecule to an existing solution, which is considered as a continuous medium.

3,724 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Abstract: It is shown that a “nanofluid” consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol % Cu nanoparticles of mean diameter <10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity.

3,551 citations