scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Temperature dependent electrical transport studies of self-aligned ZnO nanorods/Si heterostructures deposited by sputtering

17 Jun 2014-Journal of Applied Physics (American Institute of Physics)-Vol. 115, Iss: 23, pp 233706
TL;DR: In this article, self-aligned ZnO nanorods (NRs) were grown on n-Si(100) substrate by RF sputtering techniques and the average diameter, height, and density of NRs were found 48'nm, 750'nm and 1.26'×'1010'cm−2, respectively.
Abstract: Self-aligned ZnO nanorods (NRs) were grown on n-Si(100) substrate by RF sputtering techniques. The NRs are uniformly grown on 2-inch wafer along [0001] direction. Single-crystalline wurtzite structure of ZnO NRs was confirmed by X-ray diffraction. The average diameter, height, and density of NRs are found 48 nm, 750 nm, and 1.26 × 1010 cm−2, respectively. The current-voltages (I-V) characteristics of ZnO NRs/Si heterojunction (HJ) were studied in the temperature range of 120–300 K and it shows a rectifying behavior. Barrier height (ϕB) and ideality factor (η) were estimated from thermionic emission model and found to be highly temperature dependent in nature. Richardson constant (A*) was evaluated using Richardson plot of ln(Io/T2) versus q/kT plot by linear fitting in two temperature range 120–180 K and 210–300 K. Large deviation in Richardson constant from its theoretical value of n-Si indicates the presence of barrier inhomogeneities at HJ. Double Gaussian distribution of barrier height with thermionic...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used RF magnetron sputtering technique to grow ZnO nanorods on Si(100) substrate using X-ray diffraction to obtain high crystalline and optical quality of ZnOs and very low defect density.
Abstract: Vertically well aligned ZnO nanorods (NRs) were grown on Si(100) substrate using RF magnetron sputtering technique. Scanning electron microscopy images confirms uniform distribution of NRs on 2 in. wafer with average diameter, height and density being ∼75 nm, ∼850 nm, and ∼1.5 × 1010 cm−2, respectively. X-ray diffraction reveals that the ZnO NRs are grown along c-axis direction with wurtzite crystal structure. Cathodoluminescence spectroscopy, which shows a single strong peak around 3.24 eV with full width half maxima 130 meV, indicates the high crystalline and optical quality of ZnO and very low defect density. Vertically aligned nanosensors were fabricated by depositing gold circular Schottky contacts on ZnO NRs. Resistance responses of nanosensors were observed in the range from 50 to 150 °C in 1% and 5% hydrogen in argon environment, which is below and above the explosive limit (4%) of hydrogen in air. The nanosensor's sensitivity increases from 11% to 67% with temperature from 50 to 150 °C and also s...

36 citations

Journal ArticleDOI
TL;DR: Tungsten oxide (WO3−x) crystalline nano/microrods with identical morphology but different contents of oxygen vacancies were prepared by thermally evaporating fixed amount of WO3 powder in reductive atmosphere from different amounts of S power at 1150°C in a vacuum tube furnace, in which both sources were loaded in separate ceramic boat as discussed by the authors.
Abstract: Tungsten oxide (WO3−x) crystalline nano/microrods with identical morphology but different contents of oxygen vacancies were prepared by thermally evaporating fixed amount of WO3 powder in reductive atmosphere from different amounts of S power at 1150°C in a vacuum tube furnace, in which both sources were loaded in separate ceramic boat. With increasing amount of S powder, a series of tungsten oxides, WO3, WO2.90, W19O55 (WO2.89), and W18O49 (WO2.72), could be obtained. And devices were fabricated by screen-printing the obtained WO3−x crystals on ceramic substrates with Ag-Pd interdigital electrodes. With increasing content of oxygen vacancies, the devices fabricated with WO3−x crystals present a negative to positive resistance response to relative humidity. Under dry atmosphere, for the devices with increasing , the strong response to light changed from short to long wavelength; under light irradiation, the conducting ability of the devices was enhanced, due to the more efficient separation and transportation of the photogenerated carriers; and under simulated solar irradiation, the photocurrent intensity of the W18O49 device was roughly 8 times, about 500 times, and even 1000 times larger than that of the W19O55, WO2.90, and WO3 one, respectively. With the versatile optoelectrochemical properties, the obtained WO3−x crystals have the great potential to prepare various humidity sensors and optoelectrical devices.

28 citations

Journal ArticleDOI
TL;DR: In this paper, temperature dependent currentvoltage (I-V ) characteristics of metal-TiO 2 nanoplates-M planer electrodes were measured in air and 1% hydrogen atmosphere.

24 citations

Journal ArticleDOI
TL;DR: In this article, the structural, electrical, and ultraviolet (UV) light detection properties of n-ZnO/p-Si heterojunction diodes were reported.
Abstract: This paper reports the structural, electrical, and ultraviolet (UV) light detection properties of n-ZnO/p-Si heterojunction diodes. The ZnO nanocrystalline thin films were deposited over p-Si (100) substrates using RF sputter deposition. The structural and surface morphological properties of the deposited films were studied using X-ray diffractometry, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Results confirm the preferred $c$ -axis growth of the nanocrystalline films with hexagonal wurtzite structure. The junction properties of ZnO/Si heterojunction diodes were investigated using current–voltage and capacitance–voltage measurements. The fabricated diodes exhibit a high rectification ratio of $\sim 840$ at ±5 V. The ideality factor of the fabricated diodes was found to decrease from 3.2 to 1.7 when measurement temperature was increased from 303 to 403 K, whereas the barrier height increased from 0.74 to 0.96 eV in the same temperature range. Various other parameters, such as built-in potential, donor concentration, and depletion width, have also been evaluated. The UV detection properties of our fabricated structures were investigated using a UV lamp of 365-nm wavelength. The fabricated diodes show a very good response toward UV light. The values of responsivity and detectivity were found to be 0.35 A/W and $4.16\times 10^{9}$ mHz $^{1/2}\text{W}^{-1}$ , respectively.

23 citations


Cites background from "Temperature dependent electrical tr..."

  • ...a common phenomenon in large bandgap materials [23]....

    [...]

Journal ArticleDOI
TL;DR: The results suggest that porous, ultralong n-p type ZnO@Bi2O3 heterojunction nanorods could be a promising candidate for a high performance NO2 sensor for real time applications.
Abstract: Herein, porous 1D n–p type ultra-long ZnO@Bi2O3 heterojunction nanorods have been synthesized by a solvothermal method and their complex charge transport characteristics pertaining to NO2 gas sensing properties have been investigated. The porous structure of the ZnO@Bi2O3 heterojunction nanorods assisted in achieving superior sensing properties compared to pristine ZnO nanorods. Temperature-dependent in situ electrical studies of the porous heterojunction nanorods explored the unique electron transport properties under different environments, which revealed the accumulation/depletion of electrons and charge carrier recombination leading to band bending at the metal oxide heterojunctions. The formation of electron depletion layers at n-ZnO/p-Bi2O3 interfaces is believed to increase the adsorption of oxidizing gas, resulting in a fast response time (10–12 s) and 10 times higher sensitivity than that of the ZnO nanorod-based sensor towards 500 ppb NO2. To study the structure–property correlation of the ultra-long ZnO@Bi2O3 heterojunction nanorods-based sensor, a crystallographic model supported by transmission electron microscopy analysis was adopted to understand the NO2 gas adsorption properties on the surface. The crystallographic model helps to visualize the dangling bonds and the ratio of metal to oxygen ions present at the exposed crystal planes. The results suggest that porous, ultralong n–p type ZnO@Bi2O3 heterojunction nanorods could be a promising candidate for a high performance NO2 sensor for real time applications.

22 citations

References
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, a new analytical potential fluctuations model for the interpretation of current/voltage and capacitance/voltages measurements on spatially inhomogeneous Schottky contacts is presented.
Abstract: We present a new analytical potential fluctuations model for the interpretation of current/voltage and capacitance/voltage measurements on spatially inhomogeneous Schottky contacts. A new evaluation schema of current and capacitance barriers permits a quantitative analysis of spatially distributed Schottky barriers. In addition, our analysis shows also that the ideality coefficient n of abrupt Schottky contacts reflects the deformation of the barrier distribution under applied bias; a general temperature dependence for the ideality n is predicted. Our model offers a solution for the so‐called T0 problem. Not only our own measurements on PtSi/Si diodes, but also previously published ideality data for Schottky diodes on Si, GaAs, and InP agree with our theory.

1,439 citations

Journal ArticleDOI
Raymond T. Tung1
TL;DR: Results suggest that the formation mechanism of the Schottky barrier is locally nonuniform at common, polycrystalline, metal-semiconductor interfaces.
Abstract: A dipole-layer approach is presented, which leads to analytic solutions to the potential and the electronic transport at metal-semiconductor interfaces with arbitrary Schottky-barrier-height profiles. The presence of inhomogeneities in the Schottky-barrier height is shown to lead to a coherent explanation of many anomalies in the experimental results. These results suggest that the formation mechanism of the Schottky barrier is locally nonuniform at common, polycrystalline, metal-semiconductor interfaces.

1,347 citations

Journal ArticleDOI
TL;DR: Light emitting diodes based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed.
Abstract: Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal?organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour?liquid?solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro-?and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I?V characteristics of ZnO:P nanowire/ZnO:Ga p?n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.

606 citations

Journal ArticleDOI
TL;DR: In this article, a change of focus of the current research on ZnO-based DSCs (from morphology to surface control) is suggested and the origin of this striking difference in performance is analyzed and discussed with the perspective of future applications of ZnOs in dye-sensitized solar cells and related devices.
Abstract: ZnO was one of the first metal oxides used in dye-sensitized solar cells (DSCs). It exhibits a unique combination of potentially interesting properties such as high bulk electron mobility and probably the richest variety of nanostructures based on a very wide range of synthesis routes. However, in spite of the huge amount of literature produced in the past few years, the reported efficiencies of ZnO-based solar cells are still far from their TiO2 counterparts. The origin of this striking difference in performance is analyzed and discussed with the perspective of future applications of ZnO in dye-sensitized solar cells and related devices. In this regard, a change of focus of the current research on ZnO-based DSCs (from morphology to surface control) is suggested.

517 citations