scispace - formally typeset
Journal ArticleDOI

Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions

Branimir N. Grgur, +2 more
- 03 Jul 1997 - 
- Vol. 75, Iss: 11, pp 1465-1471
Reads0
Chats0
TLDR
Using the rotating ring disk technique (RRDPt(hkl)E), the ORR was studied in sulfuric acid solution over the temperature range 298 −333 K at the same temperature, the exc...
Abstract
Using the rotating ring-disk technique (RRDPt(hkl)E), the oxygen-reduction reaction (ORR) was studied in sulfuric acid solution over the temperature range 298–333 K At the same temperature, the exc...

read more

Citations
More filters
Journal ArticleDOI

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Journal ArticleDOI

Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.

TL;DR: The active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) is determined by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution.
Journal ArticleDOI

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Journal ArticleDOI

Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces

TL;DR: The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt(3)M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts.
Journal ArticleDOI

Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces

TL;DR: It is found that a controlled arrangement of nanometer-scale Ni(OH)2 clusters on platinum electrode surfaces manifests a factor of 8 activity increase in catalyzing the hydrogen evolution reaction relative to state-of-the-art metal and metal-oxide catalysts.
Related Papers (5)