scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Temperature dependent thermal conductivity evaluation of alumina based nanofluids

About: This article is published in Nanoscale.The article was published on 2006-01-01. It has received 15 citations till now. The article focuses on the topics: Nanofluid & Thermal conductivity.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of both the temperature and the particle size on the dynamic viscosities of two particular water-based nanofluids, namely water-Al2O3 and water-CuO mixtures, was investigated experimentally using a piston-type calibrated viscometer based on the Couette flow inside a cylindrical measurement chamber.

876 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study has been undertaken concerning natural convection heat transfer of a nanofluid in vertical square enclosures of different sizes, whose dimensions, width, height, and length (mm) are 25, 25, 30, 60, 40, 80, 90, and 120, respectively.

615 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle-water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components.

575 citations

Journal ArticleDOI
TL;DR: In this article, effective thermal conductivity models of nanofluids are reviewed and comparisons between experimental findings and theoretical predictions are made, and the results show that there exist significant discrepancies among the experimental data available and between the experimental results and the theoretical model predictions.
Abstract: Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class of fluids called nanofluids, in which particles of size 1–100 nm with high thermal conductivity are suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, such as Al2O3, CuO, Cu, SiO2, TiO2, have increased thermal conductivity compared with the thermal conductivity of the base fluid. In this work, effective thermal conductivity models of nanofluids are reviewed and comparisons between experimental findings and theoretical predictions are made. The results show that there exist significant discrepancies among the experimental data available and between the experimental findings and the theoretical model predictions.

550 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of temperature and particle volume concentration on the dynamic viscosity for the water-Al2O3 nanofluid has been experimentally investigated.

533 citations