scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Temperature sensitivity of soil carbon decomposition and feedbacks to climate change

09 Mar 2006-Nature (Nature Publishing Group)-Vol. 440, Iss: 7081, pp 165-173
TL;DR: This work has suggested that several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed ‘apparent’ temperature sensitivity, and these constraints may, themselves, be sensitive to climate.
Abstract: Significantly more carbon is stored in the world's soils--including peatlands, wetlands and permafrost--than is present in the atmosphere. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. If carbon stored belowground is transferred to the atmosphere by a warming-induced acceleration of its decomposition, a positive feedback to climate change would occur. Conversely, if increases of plant-derived carbon inputs to soils exceed increases in decomposition, the feedback would be negative. Despite much research, a consensus has not yet emerged on the temperature sensitivity of soil carbon decomposition. Unravelling the feedback effect is particularly difficult, because the diverse soil organic compounds exhibit a wide range of kinetic properties, which determine the intrinsic temperature sensitivity of their decomposition. Moreover, several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed 'apparent' temperature sensitivity, and these constraints may, themselves, be sensitive to climate.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: In this article, a new generation of experiments and soil carbon models were proposed to predict the SOM response to global warming, and they showed that molecular structure alone alone does not control SOM stability.
Abstract: Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

4,219 citations

Journal ArticleDOI
23 Nov 2015-Nature
TL;DR: It is argued that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils, and instead soil organic matter is a continuum of progressively decomposing organic compounds.
Abstract: Instead of containing stable and chemically unique ‘humic substances’, as has been widely accepted, soil organic matter is a mixture of progressively decomposing organic compounds; this has broad implications for soil science and its applications. The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon–climate interactions and land management. Soil organic matter contains a large portion of the world's carbon and plays an important role in maintaining productive soils and water quality. Nevertheless, a consensus on the nature of soil organic matter is lacking. Johannes Lehmann and Markus Kleber argue that soil organic matter should no longer be seen as large and persistent, chemically unique substances, but as a continuum of progressively decomposing organic compounds.

2,206 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses.
Abstract: of all soils in the northern permafrost region is approximately 18,782 � 10 3 km 2 ,o r approximately 16% of the global soil area. In the northern permafrost region, organic soils (peatlands) and cryoturbated permafrost-affected mineral soils have the highest mean soil organic carbon contents (32.2–69.6 kg m �2 ). Here we report a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses. Carbon pools were estimated to be 191.29 Pg for the 0–30 cm depth, 495.80 Pg for the 0–100 cm depth, and 1024.00 Pg for the 0–300 cm depth. Our estimate for the first meter of soil alone is about double that reported for this region in previous analyses. Carbon pools in layers deeper than 300 cm were estimated to be 407 Pg in yedoma deposits and 241 Pg in deltaic deposits. In total, the northern permafrost region contains approximately 1672 Pg of organic carbon, of which approximately 1466 Pg, or 88%, occurs in perennially frozen soils and deposits. This 1672 Pg of organic carbon would account for approximately 50% of the estimated global belowground organic carbon pool.

2,130 citations


Cites background from "Temperature sensitivity of soil car..."

  • ...Not taking into account these complex interactions, Zhuang et al. [2006] estimated net emissions from thawing permafrost in the northern high latitudes at 7–17 Pg in 100 years, while Davidson and Janssens [2006] report a potential carbon loss of 100 Pg C over the same timeframe....

    [...]

Journal ArticleDOI
TL;DR: Recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity are discussed, with implications for global carbon cycling.
Abstract: Plants are finely tuned to the seasonality of their environment, and shifts in the timing of plant activity (i.e. phenology) provide some of the most compelling evidence that species and ecosystems are being influenced by global environmental change. Researchers across disciplines have observed shifting phenology at multiple scales, including earlier spring flowering in individual plants and an earlier spring green-up' of the land surface revealed in satellite images. Experimental and modeling approaches have sought to identify the mechanisms causing these shifts, as well as to make predictions regarding the consequences. Here, we discuss recent advances in several fields that have enabled scaling between species responses to recent climatic changes and shifts in ecosystem productivity, with implications for global carbon cycling.

1,863 citations


Cites background from "Temperature sensitivity of soil car..."

  • ...It remains to be seen whether the increased plant growth and carbon uptake associated with earlier and longer growing seasons will be offset by greater carbon losses through decomposition, either because of warmer overall temperatures or shorter winter seasons (reviewed in Ref. [ 62 ])....

    [...]

Journal ArticleDOI
08 Nov 2007-Nature
TL;DR: It is proposed that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature.
Abstract: The world's soils store more carbon than is present in biomass and in the atmosphere. New experimental evidence suggests that the delivery of fresh plant-derived carbon to the subsoil stimulates microbial activity and results in mineralization of thousand-year-old carbon. This supports the recent proposal that the conservation of organic carbon at depth results from a lack of energy for decomposers. This large pool of deep carbon is unlikely to respond to future changes in temperature if no fresh carbon is supplied, limiting the predicted positive feedback between global warming and soil organic carbon decomposition. The results imply that management practices that increase the distribution of fresh carbon along the soil profile (such as deep ploughing and the use of drought-resistant crops with extensive root systems) will stimulate loss of this ancient buried carbon. It is shown that the supply of fresh plant-derived carbon to deep soil layers stimulated the microbial mineralization of carbon that is thousands of years old, and is suggested that a lack of supply of fresh-carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. The world’s soils store more carbon than is present in biomass and in the atmosphere1. Little is known, however, about the factors controlling the stability of soil organic carbon stocks2,3,4 and the response of the soil carbon pool to climate change remains uncertain5,6. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6–0.8 m depth) stimulated the microbial mineralization of 2,567 ± 226-year-old carbon. Our results support the previously suggested idea7 that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile1,8,9 could however stimulate the loss of ancient buried carbon.

1,797 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
01 Jun 1980-Planta
TL;DR: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves.
Abstract: Various aspects of the biochemistry of photosynthetic carbon assimilation in C3 plants are integrated into a form compatible with studies of gas exchange in leaves. These aspects include the kinetic properties of ribulose bisphosphate carboxylase-oxygenase; the requirements of the photosynthetic carbon reduction and photorespiratory carbon oxidation cycles for reduced pyridine nucleotides; the dependence of electron transport on photon flux and the presence of a temperature dependent upper limit to electron transport. The measurements of gas exchange with which the model outputs may be compared include those of the temperature and partial pressure of CO2(p(CO2)) dependencies of quantum yield, the variation of compensation point with temperature and partial pressure of O2(p(O2)), the dependence of net CO2 assimilation rate on p(CO2) and irradiance, and the influence of p(CO2) and irradiance on the temperature dependence of assimilation rate.

7,312 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the association of soil organic carbon (SOC) content with climate and soil texture at different soil depths, and tested the hypothesis that vegetation type, through patterns of allocation, is a dominant control on the vertical distribution of SOC.
Abstract: As the largest pool of terrestrial organic carbon, soils interact strongly with atmospheric composition, climate, and land cover change. Our capacity to predict and ameliorate the consequences of global change depends in part on a better understanding of the distributions and controls of soil organic carbon (SOC) and how vegetation change may affect SOC distributions with depth. The goals of this paper are (1) to examine the association of SOC content with climate and soil texture at different soil depths; (2) to test the hypothesis that vegetation type, through patterns of allocation, is a dominant control on the vertical distribution of SOC; and (3) to estimate global SOC storage to 3 m, including an analysis of the potential effects of vegetation change on soil carbon storage. We based our analysis on .2700 soil profiles in three global databases supplemented with data for climate, vegetation, and land use. The analysis focused on mineral soil layers. Plant functional types significantly affected the vertical distribution of SOC. The per- centage of SOC in the top 20 cm (relative to the first meter) averaged 33%, 42%, and 50% for shrublands, grasslands, and forests, respectively. In shrublands, the amount of SOC in the second and third meters was 77% of that in the first meter; in forests and grasslands, the totals were 56% and 43%, respectively. Globally, the relative distribution of SOC with depth had a slightly stronger association with vegetation than with climate, but the opposite was true for the absolute amount of SOC. Total SOC content increased with precipitation and clay content and decreased with temperature. The importance of these controls switched with depth, climate dominating in shallow layers and clay content dominating in deeper layers, possibly due to increasing percentages of slowly cycling SOC fractions at depth. To control for the effects of climate on vegetation, we grouped soils within climatic ranges and compared distributions for vegetation types within each range. The percentage of SOC in the top 20 cm relative to the first meter varied from 29% in cold arid shrublands to 57% in cold humid forests and, for a given climate, was always deepest in shrublands, inter- mediate in grasslands, and shallowest in forests ( P , 0.05 in all cases). The effect of vegetation type was more important than the direct effect of precipitation in this analysis. These data suggest that shoot/root allocations combined with vertical root distributions, affect the distribution of SOC with depth. Global SOC storage in the to p3mo fsoil was 2344 Pg C, or 56% more than the 1502 Pg estimated for the first meter (which is similar to the total SOC estimates of 1500-1600 Pg made by other researchers). Global totals for the second and third meters were 491 and 351 Pg C, and the biomes with the most SOC at 1-3 m depth were tropical evergreen forests (158 Pg C) and tropical grasslands/savannas (146 Pg C). Our work suggests that plant functional types, through differences in allocation, help to control SOC distributions with depth in the soil. Our analysis also highlights the potential importance of vegetation change and SOC pools for carbon sequestration strategies.

4,278 citations

Journal ArticleDOI
TL;DR: In this article, a model of soil organic matter (SOM) quantity and composition was used to simulate steady-state organic matter levels for 24 grassland locations in the U.S. Great Plains.
Abstract: We analyzed climatic and textural controls of soil organic C and N for soils of the U.S. Great Plains. We used a model of soil organic matter (SOM) quantity and composition to simulate steady-state organic matter levels for 24 grassland locations in the Great Plains. The model was able to simulate the effects of climatic gradients on SOM and productivity. Soil texture was also a major control over organic matter dynamics. The model adequately predicted above-ground plant production and soil C and N levels across soil textures (sandy, medium, and fine); however, the model tended to overestimate soil C and N levels for fine textured soil by 10 to 15%. The impact of grazing on the system was simulated and showed that steady-state soil C and N levels were sensitive to the grazing intensity, with soil C and N levels decreasing with increased grazing rates. Regional trends in SOM can be predicted using four site-specific variables, temperature, moisture, soil texture, and plant lignin content. Nitrogen inputs must also be known. Grazing intensity during soil development is also a significant control over steady-state levels of SOM, and since few data are available on presettlement grazing, some uncertainty is inherent in the model predictions

3,594 citations

Journal ArticleDOI
TL;DR: In this article, a discrepancy of approximately 350 × 1015 g (or Pg) of C in two recent estimates of soil carbon reserves worldwide is evaluated using the geo-referenced database developed for the World Inventory of Soil Emission Potentials (WISE) project.
Abstract: Summary The soil is important in sequestering atmospheric CO2 and in emitting trace gases (e.g. CO2, CH4 and N2O) that are radiatively active and enhance the ‘greenhouse’ effect. Land use changes and predicted global warming, through their effects on net primary productivity, the plant community and soil conditions, may have important effects on the size of the organic matter pool in the soil and directly affect the atmospheric concentration of these trace gases. A discrepancy of approximately 350 × 1015 g (or Pg) of C in two recent estimates of soil carbon reserves worldwide is evaluated using the geo-referenced database developed for the World Inventory of Soil Emission Potentials (WISE) project. This database holds 4353 soil profiles distributed globally which are considered to represent the soil units shown on a 1/2° latitude by 1/2° longitude version of the corrected and digitized 1:5 M FAO–UNESCO Soil Map of the World. Total soil carbon pools for the entire land area of the world, excluding carbon held in the litter layer and charcoal, amounts to 2157–2293 Pg of C in the upper 100 cm. Soil organic carbon is estimated to be 684–724 Pg of C in the upper 30 cm, 1462–1548 Pg of C in the upper 100 cm, and 2376–2456 Pg of C in the upper 200 cm. Although deforestation, changes in land use and predicted climate change can alter the amount of organic carbon held in the superficial soil layers rapidly, this is less so for the soil carbonate carbon. An estimated 695–748 Pg of carbonate-C is held in the upper 100 cm of the world's soils. Mean C: N ratios of soil organic matter range from 9.9 for arid Yermosols to 25.8 for Histosols. Global amounts of soil nitrogen are estimated to be 133–140 Pg of N for the upper 100 cm. Possible changes in soil organic carbon and nitrogen dynamics caused by increased concentrations of atmospheric CO2 and the predicted associated rise in temperature are discussed.

3,163 citations