scispace - formally typeset
Search or ask a question
Book ChapterDOI

Temporal Consistency Based Deep Face Forgery Detection Network

Chunlei Peng1, Wenbo Zhang1, Decheng Liu1, Nannan Wang1, Xinbo Gao1 
08 Oct 2020-pp 55-63
TL;DR: In this article, a temporal consistency based deep face forgery detection network is proposed to directly detect fake videos when given multiple consistent video frames, which effectively considers the frame consistency property and achieves promising detection performance.
Abstract: With the rapid development of deep learning techniques as well as increasingly more visual information being made publicly available on the Internet, image translation methods have achieved great progress and encouraging performance. The manipulation and fabrication of visual information has become accessible and difficult to distinguish by the naked eye, which will have adverse effects on cloud and communication security. Thus, face forgery detection techniques have recently attracted increasing attention. Most recent works regard the face forgery detection problem as the typical image classification task, ignoring the exploration of inherent properties of forgery visual information itself. In this paper, we first explore the inherent limitation of fake videos, and find that the temporal consistency could help distinguish fake faces from real faces. A temporal consistency based deep face forgery detection network is proposed to directly detect fake videos when given multiple consistent video frames. The proposed method effectively considers the frame consistency property and achieves promising detection performance. Experimental results on the face forgery detection dataset demonstrate the superior performance of the proposed method.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors conducted a bibliometric analysis of the articles published on this topic along with six research questions: What are the main research areas of the documents in deepfakes? What are current current topics in deep fakes research and how are they related? Which are the trends in deep fake research? How do topics in fake research change over time? Who is researching deepfake research and who is funding deepfake research?
Abstract: Abstract This study conducts research on deepfakes technology evolution and trends based on a bibliometric analysis of the articles published on this topic along with six research questions: What are the main research areas of the articles in deepfakes? What are the main current topics in deepfakes research and how are they related? Which are the trends in deepfakes research? How do topics in deepfakes research change over time? Who is researching deepfakes? Who is funding deepfakes research? We have found a total of 331 research articles about deepfakes in an analysis carried out on the Web of Science and Scopus databases. This data serves to provide a complete overview of deepfakes. Main insights include: different areas in which deepfakes research is being performed; which areas are the emerging ones, those that are considered basic, and those that currently have the most potential for development; most studied topics on deepfakes research, including the different artificial intelligence methods applied; emerging and niche topics; relationships among the most prominent researchers; the countries where deepfakes research is performed; main funding institutions. This paper identifies the current trends and opportunities in deepfakes research for practitioners and researchers who want to get into this topic.
References
More filters
Proceedings ArticleDOI
21 Jul 2017
TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.

11,958 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

11,682 citations

Posted Content
TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.

11,127 citations

Posted Content
TL;DR: This work presents an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples, and introduces a cycle consistency loss to push F(G(X)) ≈ X (and vice versa).
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain $X$ to a target domain $Y$ in the absence of paired examples. Our goal is to learn a mapping $G: X \rightarrow Y$ such that the distribution of images from $G(X)$ is indistinguishable from the distribution $Y$ using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping $F: Y \rightarrow X$ and introduce a cycle consistency loss to push $F(G(X)) \approx X$ (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

4,465 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
Abstract: One of the main challenges in feature learning using Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition is the design of appropriate loss functions that can enhance the discriminative power. Centre loss penalises the distance between deep features and their corresponding class centres in the Euclidean space to achieve intra-class compactness. SphereFace assumes that the linear transformation matrix in the last fully connected layer can be used as a representation of the class centres in the angular space and therefore penalises the angles between deep features and their corresponding weights in a multiplicative way. Recently, a popular line of research is to incorporate margins in well-established loss functions in order to maximise face class separability. In this paper, we propose an Additive Angular Margin Loss (ArcFace) to obtain highly discriminative features for face recognition. The proposed ArcFace has a clear geometric interpretation due to its exact correspondence to geodesic distance on a hypersphere. We present arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks which includes a new large-scale image database with trillions of pairs and a large-scale video dataset. We show that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead. To facilitate future research, the code has been made available.

4,312 citations