Terminal State Constrained Proportional Navigation Law for Lunar Soft Landing Mission
01 Mar 2018-
TL;DR: Simulation results indicate that the developed methodology can be successfully utilized in lunar landing scenarios, especially in the terminal phases where the Lander orientation has to be vertical at the end.
Abstract: With regards to a typical lunar soft landing guidance formulation, it is required to reach the desired position with terminal velocity and orientation constraints. For the terminal phase of lunar powered descent, an existing proportional navigation law developed for missile guidance is modified. Presently in the algorithm, at the beginning of each guidance cycle, a normal acceleration perpendicular to the instantaneous missile-target line-of-sight is computed. The design augmentation proposed in this paper for lunar landing, introduces a polynomial acceleration term along the line-of-sight direction in addition to the existing normal acceleration which would then ensure terminal velocity requirements. It also has the capability to meet zero line-of-sight angles at the end of trajectory maneuver. Simulation results indicate that the developed methodology can be successfully utilized in lunar landing scenarios, especially in the terminal phases where the Lander orientation has to be vertical at the end.
Citations
More filters
19 Jan 2023
TL;DR: In this article , a convex programming approach was used for planetary landing guidance originally developed for Mars landings and adapted to lunar soft landings, including the addition of state and control constraints that were previously not part of the lossless convexification framework.
Abstract: This paper builds upon a convex programming approach to propellant-optimal planetary landing guidance originally developed for Mars landings and adapts it to lunar soft landings. These novel adaptations include the addition of state and control constraints that were previously not part of the lossless convexification framework: maximum tilt rate, maximum tilt acceleration, maximum thrust ramp rate, and a terminal vertical descent phase. Additionally, we have included an inverse square central gravity model and a minimum altitude constraint in the Moon-centered, Moon-fixed (MCMF) frame. These constraints are convexified and the resulting second-order cone program is solved for an Apollo-like sample case.
References
More filters
01 Jan 2016
TL;DR: In this paper, the authors proposed to augment an existing optimal analytical guidance algorithm for the purpose of achieving terminal angle constraint during the terminal powered descent phase of a lunar soft landing mission.
Abstract: In this paper it is proposed to augment an existing optimal analytical guidance algorithm for the purpose of achieving terminal angle constraint during the terminal powered descent phase of a lunar soft landing mission. Basic algorithm formulation caters to minimizing the acceleration due to onboard engines to minimize the fuel spend and reach the desired position with desired velocity. However, in order to cope up with terminal angle constraint, an augmentation is proposed in the objective function wherein the aim is not only to minimize the energy but also to minimize the terminal error in acceleration achieved and the desired acceleration specified by the designer. This inadvertently leads to the desired terminal angle. Simulations done for the fine braking phase of lunar soft landing mission prove that terminal attitude constraints are met with the modification in objective function.
4 citations
"Terminal State Constrained Proporti..." refers background in this paper
...Guidance algorithms mentioned in [7] and [8] are optimal and analytical in nature....
[...]