scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Terrestrial c sequestration at elevated co2 and temperature: the role of dissolved organic n loss

TL;DR: In this article, a simple model of carbon-nitrogen (C-N) interactions in terrestrial ecosystems was used to examine the responses to elevated CO2 and to increased CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss.
Abstract: We used a simple model of carbon-nitrogen (C-N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short-term (,60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO 2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accu- mulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2 alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long-term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.

Summary (2 min read)

1. INTRODUCTION

  • Sandia National Laboratories has been a leader in the development of decontamination technologies for use against chemical and biological warfare (CBW) agents, toxic industrial chemicals and other toxins for use in both the military and civilian arenas.
  • In the case of DF-200, the cleavage at this bond is enhanced by the presence of cationic micelles, which serve to attract and provide a nucleophilic-rich environment of the anionic species hydroxide, hydroperoxicarbonate, and hydroperoxide ions.
  • Data collected under the micellar partition study can be compared to kinetics performance, to deduce how changes in the formulation chemistry impact performance.
  • Potential customers and sponsors include DHS, military agencies (the Defense Threat Reduction Agency, and US Army Chemical Materials Agency), and public health and transportation industries.

2.1. Initial Dynamic Light Scattering Techniques

  • Dynamic Light Scattering (DLS) - Dynamic light scattering measures the Brownian motion of molecules and particles in solution, from which size and size distributions may be determined.
  • Consistent information on micelle size could not be acquired for the surfactant solutions using these dynamic or static light scattering techniques.
  • Effervescence from the breakdown of peroxide (concentrations 3-5%) in solution interfered with the light scattering process, as gas particles passed through the detector cells.
  • In parallel with the internal collection of DLS particle size data, Particle Technology Labs, an industry leader in particle analysis, was contacted to outsource analysis of select surfactant solutions for the determination of micelle size.
  • Through recommendation of a fellow Sandian, UMN Characterization Facility personnel were contacted to perform scoping SAXS and cryo-TEM analyses, discussed in Section 2.2.1 and 2.3.

2.2. Small Angle Light Scattering

  • In addition to cryo-TEM, Small Angle Light Scattering (SAXS) analyses was sought to characterize micelles in solution.
  • For a brief overview of SAXS methodology, refer to the publication authored by Aswal.
  • Several facilities with SAXS competency were identified and contacted.
  • Two of the facilities, the University of Minnesota Characterization Facility and Argonne Advanced Photon Source expressed interest in collecting solution-based micelle characterization data.
  • These independent efforts are described in the following sections.

2.2.3. Argonne Advanced Photon Source

  • The purpose of the study undertaken at the Argonne Advanced Photon Source facility was to perform a controlled experiment, in which SAXS technique was used to characterize the surfactant phase changes (e.g., shape, size, etc.) of micelles following the addition of the components within the standard DF-200 formulation - note that peroxide was not included in this study.
  • Note that the composition of solutions #5 and #6 are nearly the same; solution #5 was prepared in-house at Sandia National Laboratories, and solution #6 was the Part 1 surfactant mixture of the three-part commercial DF-200 product, EasyDecon.
  • The set-up parameters for the experiments were: Photon energy, 12 KeV; Distance of sample to SAXS detector, 2.2 meters; Sample to WAXS detector distance, 48 cm. Solution 2, Solution 3, and Solution 4 displayed two broad peaks, but were not indicative of forming any micelle structure.

2.2.4. Conclusions of SAXS analyses

  • Collectively, the results obtained by the SAXS technique provided insight to the micellar structures and approximate micelle sizes of the key surfactant component within the DF-200 base formulation and a variety of prospective surfactant solutions.
  • The SAXS analyses were performed at three different facilities using differing instrumentation and methods, without the benefit of a standardized test method.
  • Regardless, the micelle sizes were measured to be primarily in the range of 2-3 nm.
  • The baseline data is novel in that it served as the initial indications of the micellar environment of surfactants representative of DF-200 and other prospective CBW decontamination formulations.
  • To be of most value, future test matrices should be expanded to collect micellar characterization data over a range of surfactant, co-solvent and ionic concentrations.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

Running head: Role of DON losses in carbon sequestration
Carbon Sequestration in Terrestrial Ecosystems Under Elevated CO
2
and Temperature:
Role of Dissolved Organic versus Inorganic Nitrogen Loss
Edward B. Rastetter
1
, Steven S. Perakis
2
, Gaius R. Shaver
1
, Göran I. Ågren
3
1
-The Ecosystems Center, Marine Biological Laboratory,
Woods Hole, Massachusetts 02543 USA
2
-U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center,
Corvallis, Oregon 97331 USA
3
-Department of Ecology and Environmental Research, Swedish University of Agricultural
Sciences, Box 7072, SE-750 07 Uppsala, Sweden
Key words: Global Climate Change, Carbon Sequestration, Dissolved Organic Nitrogen,
Carbon-Nitrogen Interactions, Ecosystem Models, Terrestrial Ecosystems
Abstract
We used a simple model of carbon-nitrogen (C-N) interactions in terrestrial ecosystems
to examine the responses to elevated CO
2
and to elevated CO
2
plus warming in ecosystems with
the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to
dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher
N demand in response to elevated CO
2
but that DON losses cannot. We also examined
simulations in which DON losses were held constant, were proportional to the amount of soil
1

organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of
decomposition. We found that the mode of N loss made little difference to the short-term (<60
years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much
lower carbon sequestration in the long term than did low DON losses. In the short term, C
sequestration was fueled by an internal redistribution of N from soils to vegetation and by
increases in the C:N ratio of soils and vegetation. This sequestration was about three times
larger with elevated CO
2
and warming than with elevated CO
2
alone. After year 60, C
sequestration is fueled by a net accumulation of N in the ecosystem and the rate of sequestration
was about the same with elevated CO
2
and warming as with elevated CO
2
alone. With high
DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were
constant or proportional to soil organic matter) or lost C (when DON losses were proportional to
the soil C:N ratio or to decomposition). We conclude that changes in long-term C sequestration
depend not only on the magnitude of N losses but on the form of those losses as well.
Introduction
Terrestrial ecosystems are thought to sequester about 25% of the carbon (C) currently
emitted through fossil-fuel burning and land-use change (IPCC 2001). It is hoped that these
ecosystems will continue to be a major sink for C in the future and thereby mitigate further
increases in CO
2
in the atmosphere. However, productivity in terrestrial ecosystems is strongly
constrained by the dynamics of the nitrogen (N) cycle (Vitousek et al. 1998) and C sequestration
will likely require a net accumulation of N in these ecosystems. The input of N to ecosystems
has been widely studied, especially from the perspective of atmospheric N deposition (Galloway
et al. 2003, 1995, Ollinger et al. 1993) and an understanding of the controls on biological N
2
2

fixation is emerging (Cleveland et al. 1999, Rastetter et al. 2001, Vitousek et al. 2002).
However, surprisingly little is known about the form, magnitude, or controls of N losses from
terrestrial ecosystems (Pellerin et al. in press, McDowell 2003, Neff et al. 2003, Aber et al. 2002,
Hedin et al. 1995, Sollins and McCorrison 1981). In this paper we argue that the amount of C
sequestered in terrestrial ecosystems in response to elevated CO
2
depends on the fraction of N
losses that are in the form of dissolved organic N (DON) versus dissolved inorganic N (DIN);
because plants can curtail DIN losses as N demand increases in response to elevated CO
2
, but
plants have little control over DON losses, the potential for accumulating N by limiting N losses
should be small if DON losses are high. Thus, the potential for sequestering C in response to
elevated CO
2
should be small if a large fraction of the N losses are as DON.
Modifications to the Standard Model
Our assessment of C sequestration in relation to DON losses relies upon three
modifications to what has been called "the standard model" of N accumulation in terrestrial
ecosystems (Vitousek et al. 1998). First, as suggested by Vitousek et al. (1998) and Neff et al.
(2003), the standard model needs to be modified to include DON losses. Second, the standard
model needs to be modified to accommodate an increase in N demand by both plants and
microbes in response to elevated CO
2
levels. Finally, the dynamics of DIN in the standard model
have to be modified to reflect the fact that N uptake by microorganisms, N uptake by plants, and
N losses from the ecosystems happen simultaneously rather than sequentially. These changes are
discussed in more detail below.
There are also several assumptions we have made to simplify our analysis. The first
relates to the growing evidence that plants can use organic forms of N (Schimel and Bennett
3

2003, Neff et al. 2003, McKane et al. 2002, Schimel and Chapin 1996, Kieland 1994, Chapin et
al. 1993). We will circumvent this complication by lumping plant-available forms of DON into
the DIN pool and use "DON" to refer only to unavailable forms. By lumping plant-available
forms of DON into the DIN pool, we are also assuming that these forms of DON are available to
soil microbes. We will further simplify our analysis by assuming that any additional DON
available to microbes is retained in the ecosystems and can therefore be lumped with the soil
organic N (Lispon and Monson 1998, Perakis and Hedin 2001). Thus, we assume that the DON
lost from ecosystems is in a form that is unavailable to both plants and microbes. We also
assume that there is no change in the ratio of NH
4
to NO
3
in soil solution so that the DIN losses
can be represented as proportional to the total DIN in soil solution. Finally, we will lump
gaseous N losses (e.g., denitrification) in with DIN losses.
DON losses: Until recently, DON losses from terrestrial ecosystems have been largely
ignored (Goodale et al. 2000, Campbell et al. 2000) and were not incorporated into the standard
model of N accumulation (Vitousek et al. 1998). Estimates that infer total N losses from stream
chemistry indicate that DON losses range from less than 20% to greater than 80% of those losses
(e.g., Perakis and Hedin 2002, Qualls et al. 2002, Buffam et al. 2001, Goodale et al. 2000,
McHale et al. 2000). Because of retention and processing of DON and DIN in the vadose zone,
ground water, riparian areas, and streams (Kroeger 2003, Hedin et al 1998, Newbold et al. 1981,
1982), stream water chemistry probably does not faithfully reflect the chemistry of water leaving
the rooting zone of upland areas. For example, Currie et al. (1996) found that DON accounted
for over 97% of the N in zero-tension lysimeters at the base of the rooting zone of a previously
logged New England forest, whereas Goodale et al. (2000) found that on average DON
4

accounted for only 67% of the N in steams draining previously logged New England forests. In
a southern hardwood forest, Qualls et al. (2002) found N fluxes to be 92% DON in the B
horizon, 75% in the C horizon, and 79% in the stream. In addition, none of these studies
quantify the fraction of DON that might be available to either plants or microbes. Thus, although
DON losses appear to be important, the relative losses of DIN versus DON from upland
ecosystems are far from certain (McDowell 2003). Our purpose here is not to resolve this
uncertainty but rather to assess the consequences of DIN versus DON losses on the potential for
C sequestration in terrestrial ecosystems in response to elevated CO
2
concentrations.
Increased N demand in response to elevated CO
2
: The standard model of N
accumulation is formulated from the perspective of a single limiting resource (i.e., N) and
therefore does not address the effects of other resources, like CO
2
, on N dynamics. An alternate
perspective is provided by the "functional equilibrium hypothesis" (Farrar and Jones 2000,
Chapin et al. 1987, Bloom et al. 1985), which predicts that increased CO
2
concentrations will
free plant resources currently allocated toward C acquisition and allow them to be reallocated
toward the acquisition of other resources like N. This hypothesis has been corroborated in
several studies on tree saplings, in which allocation to fine roots increased in response to
elevated CO
2
(e.g., Tingey et al 2000, Janssens et al. 1998, Prior et al. 1997), and has also been
observed in intact forest stands, although the response is weaker than in studies on saplings
(Pritchard et al 2001, Matamala and Schlesinger 2000). This compensatory reallocation of
internal resources should increase N-uptake potential of plants. In addition, elevated CO
2
should
increase the flux of C to soils in litter and root exudates and thereby increase microbial N
demand (Johnson et al. 2001, Mikan et al. 2000). These responses of plants and microbes to
5

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated the relationship among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams in temperate southern Chile and Argentina, and concluded that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds.
Abstract: [1] We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2–9.7 mg C/L) and DON (range: 0.008–0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition.

26 citations


Cites background from "Terrestrial c sequestration at elev..."

  • ...This information can however have important implications for understanding the degree of C:N couplings in terrestrial ecosystems, and how such couplings influence ecosystemlevel patterns of nutrient limitation [Schimel et al., 1997], the response to elevated CO2 and temperature [ Rastetter et al., 2005 ], and the quality and quantity of dissolved organic matterdeliveredtodownstreamaquaticecosystems[Brookshire et al., 2005]....

    [...]

Book
16 Jan 2012
TL;DR: In this article, the structure and functioning of terrestrial ecosystems, using examples ranging from the Arctic to the tropics to demonstrate how they react under differing conditions, are discussed and developed into a set of principles that can be used as starting points for analysing questions about ecosystem behaviour.
Abstract: Human activities impact the environment and modify the cycles of important elements such as carbon and nitrogen from local to global scales In order to maintain long-term and sustainable use of the world's natural resources it is important that we understand how and why ecosystems respond to such changes This book explains the structure and functioning of terrestrial ecosystems, using examples ranging from the Arctic to the tropics to demonstrate how they react under differing conditions This knowledge is developed into a set of principles that can be used as starting points for analysing questions about ecosystem behaviour Ecosystem dynamics are also considered, illustrating how ecosystems develop and change over a range of temporal and spatial scales and how they react to perturbations, whether natural or man-made Throughout the book, descriptive studies are merged with simple mathematical models to reinforce the concepts discussed and aid the development of predictive tools

26 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use a dynamical model to show that N limitation at steady-state in old-growth forests depends on the balance of biotically controllable versus uncontrollable inputs and losses.
Abstract: Human activity is drastically altering global nitrogen (N) availability. The extent to which ecosystems absorb additional N—and with it, additional CO2—depends on whether net primary production (NPP) is N-limited, so it is important to understand conditions under which N can limit NPP. Here I use a general dynamical model to show that N limitation at steady-state—such as in old-growth forests—depends on the balance of biotically controllable versus uncontrollable N inputs and losses. Steady-state N limitation is only possible when uncontrollable inputs (for example, atmospheric deposition) exceed controllable losses (for example, leaching of plant-available soil N), which is the same as when uncontrollable losses (for example, leaching of plant-unavailable soil N) exceed controllable inputs (biological N fixation). These basic results are robust to many model details, such as the number of plant-unavailable soil N pools and the number and type of N fixers. Empirical data from old-growth tropical (Hawai’i) and temperate (Oregon, Washington, Chile) forests support the model insights. Practically, this means that any N fixer—symbiotic or not—could overcome ecosystem N limitation, so understanding N limitation requires understanding controls on all N fixers. Further, comparing losses of plant-available N to abiotic inputs could offer a rapid diagnosis of whether ecosystems can be N-limited, although the applicability of this result is constrained to ecosystems with a steady-state N cycle such as old-growth forests largely devoid of disturbance.

24 citations

Journal ArticleDOI
TL;DR: This work examines how modelers assess, acquire, and prepare data for their models, and suggests data management techniques or requirements for data systems to improve access and use by modelers and generally improve understanding of the Arctic system.
Abstract: The Arctic is changing rapidly with dramatic local and global effect. To understand that change requires understanding the Arctic as a system. Models of different processes and at various scales are necessary tools for analyzing and understanding the Earth system. Models are extremely diverse, yet they all require quality data. Through a series of case studies, augmented with ethnographic observation around the International Polar Year, this work examines how modelers assess, acquire, and prepare data for their models. By comparing specific case studies, common themes emerge that can be compared against broader observation. These themes, in turn, suggest data management techniques or requirements for data systems to improve access and use by modelers and generally improve understanding of the Arctic system. The study has an Arctic focus because of the rapid changes occurring in the Arctic, but the approach and results should apply generally to Earth system science. This case study based approach has proven to be a useful method for teasing out both general and specific data needs for different models. An overarching lesson is that greater short-term benefit to modelers and significant gains in efficiency can be achieved by improving the formats, convention, and consistency of the data rather than improved interfaces and analysis tools. A “data-first” philosophy can improve the data systems that support the overall interdisciplinary, integrative science necessary to understand the complex Earth system.

22 citations

Journal ArticleDOI
TL;DR: Management lessons from this study are the importance of strategies that help retain nutrients on site, recognizing the role of coarse woody debris in immobilization and subsequent release of nutrients, and the potential for nutrient additions to enhance biomass growth and recovery in secondary tropical forests.
Abstract: Secondary forests now make up more than one-half of all tropical forests, and constraints on their biomass accumulation will influence the strength of the terrestrial carbon (C) sink in the coming decades. However the variance in secondary tropical forest biomass for a given stand age and climate is high and our understanding of why is limited. We constructed a model of terrestrial C, nitrogen (N), and phosphorus (P) cycling to examine the influence of disturbance and management practices on nutrient limitation and biomass recovery in secondary tropical forests. The model predicted that N limited the rate of forest recovery in the first few decades following harvest, but that this limitation switched to P approximately 30-40 yr after abandonment, consistent with field data on N and P cycling from secondary tropical forest chronosequences. Simulated biomass recovery agreed well with field data of biomass accumulation following harvest (R2 = 0.80). Model results showed that if all biomass remained on site following a severe disturbance such as blowdown, regrowth approached pre-disturbance biomass in 80-90 yr, and recovery was faster following smaller disturbances such as selective logging. Field data from regrowth on abandoned pastures were consistent with simulated losses of nutrients in soil organic matter, particularly P. Following any forest disturbance that involved the removal of nutrients (i.e., except blowdown), forest regrowth produced reduced biomass relative to the initial state as a result of nutrient loss through harvest, leaching and/or sequestration by secondary minerals. Differences in nutrient availability accounted for 49-94% of the variance in secondary forest biomass C at a given stand age. Management lessons from this study are the importance of strategies that help retain nutrients on site, recognizing the role of coarse woody debris in immobilization and subsequent release of nutrients, and the potential for nutrient additions to enhance biomass growth and recovery in secondary tropical forests.

18 citations


Cites methods from "Terrestrial c sequestration at elev..."

  • ...It has been used to study patterns of forest recovery following land use and abandonment and the effects of increased atmospheric CO2 and fertilizer on ecosystem C storage (Rastetter et al. 1997; Herbert et al. 2003; Rastetter et al. 2005; Rastetter et al. 2013)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N2, which leads to lag times in the continuation of the cascade.
Abstract: Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N2) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth’s atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumul...

2,647 citations

Journal ArticleDOI
TL;DR: Revue bibliographique suggerant que, au moins pour la croissance vegetative les plantes fonctionnent conformement aux theoremes economiques: optimiser les profits and repartir de facon optimale les ressources.
Abstract: Revue bibliographique suggerant que, au moins pour la croissance vegetative les plantes fonctionnent conformement aux theoremes economiques: optimiser les profits et repartir de facon optimale les ressources

2,376 citations

Journal ArticleDOI
01 Mar 2004-Ecology
TL;DR: A complete new conceptual model of the soil N cycle needs to incorporate recent research on plant–microbe competition and microsite processes to explain the dynamics of N across the wide range of N availability found in terrestrial ecosystems.
Abstract: Until recently, the common view of the terrestrial nitrogen cycle had been driven by two core assumptions—plants use only inorganic N and they compete poorly against soil microbes for N. Thus, plants were thought to use N that microbes “left over,” allowing the N cycle to be divided cleanly into two pieces—the microbial decomposition side and the plant uptake and use side. These were linked by the process of net mineralization. Over the last decade, research has changed these views. N cycling is now seen as being driven by the depolymerization of N-containing polymers by microbial (including mycorrhizal) extracellular enzymes. This releases organic N-containing monomers that may be used by either plants or microbes. However, a complete new conceptual model of the soil N cycle needs to incorporate recent research on plant–microbe competition and microsite processes to explain the dynamics of N across the wide range of N availability found in terrestrial ecosystems. We discuss the evolution of thinking abou...

2,126 citations

Journal ArticleDOI
TL;DR: In the US, nitrogen deposition remains relatively constant in the northeastern United States and is increasing in the Southeast and the West (Fenn et al. as mentioned in this paper, 2003), while acid acid deposition is increasing.
Abstract: N itrogen emissions to the atmosphere due to human activity remain elevated in industrialized regions of the world and are accelerating in many developing regions (Galloway 1995). Although the deposition of sulfur has been reduced over much of the United States and Europe by aggressive environmental protection policies, current nitrogen deposition reduction targets in the US are modest. Nitrogen deposition remains relatively constant in the northeastern United States and is increasing in the Southeast and the West (Fenn et al. in press). The US acid deposition effects

1,734 citations

Book
01 Jan 1977
TL;DR: In this article, Biogeochemistry of a forested ecosystem, Biogeochemical properties of forested ecosystems, and biogeochemistry in forested environments, the authors present a biogeochemical model of forest ecosystems.
Abstract: Biogeochemistry of a forested ecosystem , Biogeochemistry of a forested ecosystem , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

1,613 citations

Frequently Asked Questions (14)
Q1. What are the contributions mentioned in the paper "Running head: role of don losses in carbon sequestration carbon sequestration in terrestrial ecosystems under elevated co2 and temperature: role of dissolved organic versus inorganic nitrogen loss" ?

The authors used a simple model of carbon-nitrogen ( C-N ) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems with the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen ( DON ) to dissolved inorganic nitrogen ( DIN ) loss. The authors also examined simulations in which DON losses were held constant, were proportional to the amount of soil The authors postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2 but that DON losses can not. 

The best potential for testing their ideas in a timely manner would be to experimentally manipulate ecosystems where the masking effects of within-ecosystem responses are likely to be small relative to the effects of DON losses to determine if there is a trend toward high C sequestration with low DON losses relative to DIN losses. Thus the manipulations should be on ecosystems where the C: N ratio of vegetation is low ( i. e., close to the C: N ratio of soils so that the redistribution of N has a smaller effect ), where the vegetation is unlikely to increase in woodiness ( i. e., to avoid the masking effects of increasing C: N ratios ), and where the total throughput of DON plus DIN is high ( i. e., a high potential to sequester N ). Their aim in this paper has been to examine how considering the relative magnitudes of DON versus DIN losses might influence assessments of potential C sequestration in terrestrial ecosystems. Their conclusions are that it is vital to quantify these fluxes at least in regards to evaluations of the long-term potential for C sequestration. 

In addition, increases in plant and soil C:N ratios can contribute to the withinecosystem responses and help mask the effects of DON losses. 

Terrestrial ecosystems are thought to sequester about 25% of the carbon (C) currentlyemitted through fossil-fuel burning and land-use change (IPCC 2001). 

The best potential for testing their ideas in a timely manner would be to experimentally manipulate ecosystems where the masking effects of within-ecosystem responses are likely to be small relative to the effects of DON losses to determine if there is a trend toward high C sequestration with low DON losses relative to DIN losses. 

With high DON losses, N gains and losses were small during the first 100 years of all the simulations, and the dynamics in the gradual-change simulations generally lagged behind those in the instantaneous-change simulations by about two decades. 

Increases in plant and soil C:N ratios contributed less to C sequestration, but in amounts proportionately equivalent to their contributions in the instantaneous-change simulations. 

In this paper the authors argue that the amount of C sequestered in terrestrial ecosystems in response to elevated CO2 depends on the fraction of N losses that are in the form of dissolved organic N (DON) versus dissolved inorganic N (DIN); because plants can curtail DIN losses as N demand increases in response to elevated CO2, but plants have little control over DON losses, the potential for accumulating N by limiting N losses should be small if DON losses are high. 

Because the C:N ratio of soils is about 25 and that of plants is about 143 (initial C:N values), this redistribution of N results in a net increase in the amount of C stored per unit N in the ecosystem. 

Their assessment of C sequestration in relation to DON losses relies upon threemodifications to what has been called "the standard model" of N accumulation in terrestrial ecosystems (Vitousek et al. 1998). 

On average, the ecosystems sequestered only about 1 kg C m-2 between years 60 and 1000 or about 7% of the C sequestered during the first 60 years and 6% of the C sequestered in the ecosystems with low DON losses (Fig. 1). 

Sequestration of C continues for the duration of all low-DON-loss simulations, although at a rate that is only about 17% of that during the first 60 years (Fig. 1,Table 3). 

Because of the explicit linkages between DOC and DON in the various model structures,simulations with higher DON loss also exhibit higher DOC loss. 

with a combination of elevated CO2 and warming, increases in woody tissues and the consequent increase in plant C:N ratio contributed significantly to an increase the C stored per unit N in the ecosystem (Fig. 2).