scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Testing of droplet-based microelectrofluidic systems

30 Sep 2003-Vol. 1, pp 1192-1200
TL;DR: This paper presents a costeffective concurrent test methodology for droplet-based microelectrofluidic systems, presents a classification of catastrophic and parametric faults in such systems and shows how faults can be detected by electrostatically controlling and tracking droplet motion.
Abstract: Composite microsystems that integrate mechanical and fluidic components are fast emerging as the next generation of system-on-chip designs. As these systems become widespread in safety-critical biomedical applications, dependability emerges as a critical performance parameter. In this paper, we present a costeffective concurrent test methodology for droplet-based microelectrofluidic systems. We present a classification of catastrophic and parametric faults in such systems and show how faults can be detected by electrostatically controlling and tracking droplet motion. We then present tolerance analysis based on Monte-Carlo simulations to characterize the impact of parameter variations on system performance. To the best of our knowledge, this constitutes the first attempt to define a fault model and to develop a test methodology for droplet-based microelectrofluidic systems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The proposed top-down design-automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with a microelectronic component in next-generation systems-on-chips (SOCs).
Abstract: Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, deoxyribonucleic acid (DNA) sequencing, and other laboratory procedures involving molecular biology. In contrast to continuous-flow systems that rely on permanently etched microchannels, micropumps, and microvalves, digital microfluidics offers a scalable system architecture and dynamic reconfigurability; groups of unit cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. This paper presents an overview of an integrated system-level design methodology that attempts to address key issues in the synthesis, testing and reconfiguration of digital microfluidics-based biochips. Different actuation mechanisms for microfluidics-based biochips, and associated design-automation trends and challenges are also discussed. The proposed top-down design-automation approach is expected to relieve biochip users from the burden of manual optimization of bioassays, time-consuming hardware design, and costly testing and maintenance procedures, and it will facilitate the integration of fluidic components with a microelectronic component in next-generation systems-on-chips (SOCs).

253 citations

Patent
10 Nov 2009
TL;DR: In this article, a method of splitting a droplet is provided, the method including providing a droplets microactuator including a single droplet including one or more beads and immobilizing at least one of the beads.
Abstract: The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of splitting a droplet is provided, the method including providing a droplet microactuator including a droplet including one or more beads and immobilizing at least one of the one or more beads. The method further includes conducting one or more droplet operations to divide the droplet to yield a set of droplets including a droplet including the one or more immobilized beads and a droplet substantially lacking the one or more immobilized beads.

177 citations

Patent
30 Jan 2006
TL;DR: The use of soldermask as an electrode insulator for droplet manipulation as well as techniques for adapting other traditional PCB layers and materials for droplets-based microfluidics are also disclosed in this article.
Abstract: Apparatuses and methods for manipulating droplets on a printed circuit board (PCB) are disclosed. Droplets are actuated upon a printed circuit board substrate surface by the application of electrical potentials to electrodes defined on the PCB. The use of soldermask as an electrode insulator for droplet manipulation as well techniques for adapting other traditional PCB layers and materials for droplet-based microfluidics are also disclosed.

166 citations

Patent
18 Feb 2011
TL;DR: In this paper, a droplet-based particle sorting method is described, in which a suspension of particles and electrodes are arranged for conducting droplet operations using droplets comprising particles.
Abstract: The present invention relates to droplet-based particle sorting. According to one embodiment, a droplet microactuator is provided and includes: (a) a suspension of particles; and (b) electrodes arranged for conducting droplet operations using droplets comprising particles. A method of transporting a particle is also provided, wherein the method includes providing a droplet comprising the particle and transporting the droplet on a droplet microactuator.

154 citations

Book
20 Nov 2007
TL;DR: This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and V LSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs.
Abstract: Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly System-on-Chip Test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. KEY FEATURES * Emphasizes VLSI Test principles and Design for Testability architectures, with numerous illustrations/examples. * Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NOC) Testing, Software-Based Self-Testing, FPGA Testing, MEMS Testing, and System-In-Package (SIP) Testing, which are not yet available in any testing book. * Covers the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and self-repair from digital to memory circuits. * Discusses future nanotechnology test trends and challenges facing the nanometer design era; promising nanotechnology test techniques, including Quantum-Dots, Cellular Automata, Carbon-Nanotubes, and Hybrid Semiconductor/Nanowire/Molecular Computing. * Practical problems at the end of each chapter for students.

151 citations

References
More filters
PatentDOI
24 Sep 2003-Science
TL;DR: The fluidic multiplexor as discussed by the authors is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs.
Abstract: High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.

2,292 citations

Journal ArticleDOI
16 Oct 1998-Science
TL;DR: A device was developed that uses microfabricated fluidic channels, heaters, temperature sensors, and fluorescence detectors to analyze nanoliter-size DNA samples to facilitate the use of DNA analysis in applications such as rapid medical diagnostics and point-of-use agricultural testing.
Abstract: A device was developed that uses microfabricated fluidic channels, heaters, temperature sensors, and fluorescence detectors to analyze nanoliter-size DNA samples. The device is capable of measuring aqueous reagent and DNA-containing solutions, mixing the solutions together, amplifying or digesting the DNA to form discrete products, and separating and detecting those products. No external lenses, heaters, or mechanical pumps are necessary for complete sample processing and analysis. Because all of the components are made using conventional photolithographic production techniques, they operate as a single closed system. The components have the potential for assembly into complex, low-power, integrated analysis systems at low unit cost. The availability of portable, reliable instruments may facilitate the use of DNA analysis in applications such as rapid medical diagnostics and point-of-use agricultural testing.

1,486 citations


"Testing of droplet-based microelect..." refers methods in this paper

  • ...We then present tolerance analysis based on Monte-Carlo simulations to characterize the impact of parameter variations on system performance....

    [...]

Journal ArticleDOI
TL;DR: In this article, a microactuator for rapid manipulation of discrete microdroplets is presented, which is accomplished by direct electrical control of the surface tension through two sets of opposing planar electrodes fabricated on glass.
Abstract: A microactuator for rapid manipulation of discrete microdroplets is presented. Microactuation is accomplished by direct electrical control of the surface tension through two sets of opposing planar electrodes fabricated on glass. A prototype device consisting of a linear array of seven electrodes at 1.5 mm pitch was fabricated and tested. Droplets (0.7–1.0 μl) of 100 mM KCl solution were successfully transferred between adjacent electrodes at voltages of 40–80 V. Repeatable transport of droplets at electrode switching rates of up to 20 Hz and average velocities of 30 mm/s have been demonstrated. This speed represents a nearly 100-fold increase over previously demonstrated electrical methods for the transport of droplets on solid surfaces.

1,471 citations


"Testing of droplet-based microelect..." refers background in this paper

  • ...Composite microsystems that incorporate microelectromechanical (MEMS) and microelectrofluidic systems (MEFS) are fast emerging as the next generation of system-on-chip designs [1, 2, 3]....

    [...]

  • ...The testing of composite microsystems containing fluidic components has however received much less attention....

    [...]

01 Mar 2003
TL;DR: High-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers are developed to construct the microfluidity analog of a comparator array and a microfluidsic memory storage device whose behavior resembles random-access memory.
Abstract: We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory.

1,060 citations


"Testing of droplet-based microelect..." refers background in this paper

  • ...To the best of our knowledge, this constitutes the first attempt to define a fault model and to develop a test methodology for droplet-based microelectrofluidic systems....

    [...]

Journal ArticleDOI
TL;DR: The technique of applying statistical methods to tolerance analysis of mechanical assemblies and the application of these methods to solid modelling systems and to the geometric tolerancing standard are described.
Abstract: The review paper describes the technique of applying statistical methods to tolerance analysis of mechanical assemblies. It states the problem, and reviews the various approaches proposed for statistical tolerance analysis. It also considers the important case of a nonideal probability distribution of component tolerances. Lastly, it reviews and assesses the application of these methods to solid modelling systems and to the geometric tolerancing standard, and makes recommendations about possible directions to be taken in future research on the subject.

260 citations