scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Texture features for classification of ultrasonic liver images

01 Jan 1992-IEEE Transactions on Medical Imaging (IEEE Trans Med Imaging)-Vol. 11, Iss: 2, pp 141-152
TL;DR: A new texture feature set (multiresolution fractal features) based on multiple resolution imagery and the fractional Brownian motion model is proposed to detect diffuse liver diseases quickly and accurately.
Abstract: The classification of ultrasonic liver images is studied, making use of the spatial gray-level dependence matrices, the Fourier power spectrum, the gray-level difference statistics, and the Laws texture energy measures. Features of these types are used to classify three sets of ultrasonic liver images-normal liver, hepatoma, and cirrhosis (30 samples each). The Bayes classifier and the Hotelling trace criterion are employed to evaluate the performance of these features. From the viewpoint of speed and accuracy of classification, it is found that these features do not perform well enough. Hence, a new texture feature set (multiresolution fractal features) based on multiple resolution imagery and the fractional Brownian motion model is proposed to detect diffuse liver diseases quickly and accurately. Fractal dimensions estimated at various resolutions of the image are gathered to form the feature vector. Texture information contained in the proposed feature vector is discussed. A real-time implementation of the algorithm produces about 90% correct classification for the three sets of ultrasonic liver images. >
Citations
More filters
Book
01 Dec 1993
TL;DR: The geometric, random field, fractal, and signal processing models of texture are presented and major classes of texture processing such as segmentation, classification, and shape from texture are discussed.
Abstract: This chapter reviews and discusses various aspects of texture analysis. The concentration is o the various methods of extracting textural features from images. The geometric, random field, fractal, and signal processing models of texture are presented. The major classes of texture processing pro lems such as segmentation, classification, and shape from texture are discussed. The possible applic tion areas of texture such as automated inspection, document processing, and remote sensing a summarized. A bibliography is provided at the end for further reading.

2,257 citations

Journal ArticleDOI
TL;DR: This paper reviews ultrasound segmentation methods, in a broad sense, focusing on techniques developed for medical B-mode ultrasound images, and presents a classification of methodology in terms of use of prior information.
Abstract: This paper reviews ultrasound segmentation methods, in a broad sense, focusing on techniques developed for medical B-mode ultrasound images. First, we present a review of articles by clinical application to highlight the approaches that have been investigated and degree of validation that has been done in different clinical domains. Then, we present a classification of methodology in terms of use of prior information. We conclude by selecting ten papers which have presented original ideas that have demonstrated particular clinical usefulness or potential specific to the ultrasound segmentation problem

1,150 citations

Journal ArticleDOI
TL;DR: The authors' present results show that their scheme can be regarded as a technique for CAD systems to detect nodules in helical CT pulmonary images.
Abstract: The purpose of this study is to develop a technique for computer-aided diagnosis (CAD) systems to detect lung nodules in helical X-ray pulmonary computed tomography (CT) images. The authors propose a novel template-matching technique based on a genetic algorithm (GA) template matching (GATM) for detecting nodules existing within the lung area; the GA was used to determine the target position in the observed image efficiently and to select an adequate template image from several reference patterns for quick template matching. In addition, a conventional template matching was employed to detect nodules existing on the lung wall area, lung wall template matching (LWTM), where semicircular models were used as reference patterns; the semicircular models were rotated according to the angle of the target point on the contour of the lung wall. After initial detecting candidates using the two template-matching methods, the authors extracted a total of 13 feature values and used them to eliminate false-positive findings. Twenty clinical cases involving a total of 557 sectional images were used in this study. 71 nodules out of 98 were correctly detected by the authors' scheme (i.e., a detection rate of about 72%), with the number of false positives at approximately 1.1/sectional image. The authors' present results show that their scheme can be regarded as a technique for CAD systems to detect nodules in helical CT pulmonary images.

484 citations


Additional excerpts

  • ...Their definition is as follows [23], [24]:...

    [...]

Journal ArticleDOI
TL;DR: The results of this paper show that it is possible to identify a group of patients at risk of stroke based on texture features extracted from ultrasound images of carotid plaques, whereas other patients may be spared from an unnecessary operation.
Abstract: There are indications that the morphology of atherosclerotic carotid plaques, obtained by high-resolution ultrasound imaging, has prognostic implications. The objective of this study was to develop a computer-aided system that will facilitate the characterization of carotid plaques for the identification of individuals with asymptomatic carotid stenosis at risk of stroke. A total of 230 plaque images were collected which were classified into two types: symptomatic because of ipsilateral hemispheric symptoms, or asymptomatic because they were not connected with ipsilateral hemispheric events. Ten different texture feature sets were extracted from the manually segmented plaque images using the following algorithms: first-order statistics, spatial gray level dependence matrices, gray level difference statistics, neighborhood gray tone difference matrix, statistical feature matrix, Laws texture energy measures, fractal dimension texture analysis, Fourier power spectrum and shape parameters. For the classification task a modular neural network composed of self-organizing map (SOM) classifiers, and combining techniques based on a confidence measure were used. Combining the classification results of the ten SOM classifiers inputted with the ten feature sets improved the classification rate of the individual classifiers, reaching an average diagnostic yield (DY) of 73.1%. The same modular system was implemented using the statistical k-nearest neighbor (KNN) classifier. The combined DY for the KNN system was 68.8%. The results of this paper show that it is possible to identify a group of patients at risk of stroke based on texture features extracted from ultrasound images of carotid plaques. This group of patients may benefit from a carotid endarterectomy whereas other patients may be spared from an unnecessary operation.

307 citations


Cites methods from "Texture features for classification..."

  • ...For the laws TEM extraction [11], [17], vectors of length , , , and were used, where performs local averaging, acts as edge detector andacts as spot detector....

    [...]

  • ...The Hurst coefficient [11] was computed for image resolutions , 2, 3, 4....

    [...]

Journal ArticleDOI
TL;DR: A comparative evaluation of despeckle filtering based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts in the assessment of 440 ultrasound images of the carotid artery bifurcation suggests that the first order statistics filter lsmv, gave the best performance, followed by the geometric filter gf4d, and the homogeneous mask area filter l sminsc.
Abstract: It is well-known that speckle is a multiplicative noise that degrades the visual evaluation in ultrasound imaging. The recent advancements in ultrasound instrumentation and portable ultrasound devices necessitate the need of more robust despeckling techniques for enhanced ultrasound medical imaging for both routine clinical practice and teleconsultation. The objective of this work was to carry out a comparative evaluation of despeckle filtering based on texture analysis, image quality evaluation metrics, and visual evaluation by medical experts in the assessment of 440 (220 asymptomatic and 220 symptomatic) ultrasound images of the carotid artery bifurcation. In this paper a total of 10 despeckle filters were evaluated based on local statistics, median filtering, pixel homogeneity, geometric filtering, homomorphic filtering, anisotropic diffusion, nonlinear coherence diffusion, and wavelet filtering. The results of this study suggest that the first order statistics filter lsmv, gave the best performance, followed by the geometric filter gf4d, and the homogeneous mask area filter lsminsc. These filters improved the class separation between the asymptomatic and the symptomatic classes based on the statistics of the extracted texture features, gave only a marginal improvement in the classification success rate, and improved the visual assessment carried out by the two experts. More specifically, filters lsmv or gf4d can be used for despeckling asymptomatic images in which the expert is interested mainly in the plaque composition and texture analysis; and filters lsmv, gf4d, or lsminsc can be used for the despeckling of symptomatic images in which the expert is interested in identifying the degree of stenosis and the plaque borders. The proper selection of a despeckle filter is very important in the enhancement of ultrasonic imaging of the carotid artery. Further work is needed to evaluate at a larger scale and in clinical practice the performance of the proposed despeckle filters in the automated segmentation, texture analysis, and classification of carotid ultrasound imaging.

288 citations

References
More filters
Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2 /sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions.
Abstract: Multiresolution representations are effective for analyzing the information content of images. The properties of the operator which approximates a signal at a given resolution were studied. It is shown that the difference of information between the approximation of a signal at the resolutions 2/sup j+1/ and 2/sup j/ (where j is an integer) can be extracted by decomposing this signal on a wavelet orthonormal basis of L/sup 2/(R/sup n/), the vector space of measurable, square-integrable n-dimensional functions. In L/sup 2/(R), a wavelet orthonormal basis is a family of functions which is built by dilating and translating a unique function psi (x). This decomposition defines an orthogonal multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror filters. Wavelet representation lies between the spatial and Fourier domains. For images, the wavelet representation differentiates several spatial orientations. The application of this representation to data compression in image coding, texture discrimination and fractal analysis is discussed. >

20,028 citations

Book
01 Jan 1973
TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Abstract: Provides a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition. The topics treated include Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.

13,647 citations

Journal ArticleDOI
TL;DR: A technique for image encoding in which local operators of many scales but identical shape serve as the basis functions, which tends to enhance salient image features and is well suited for many image analysis tasks as well as for image compression.
Abstract: We describe a technique for image encoding in which local operators of many scales but identical shape serve as the basis functions. The representation differs from established techniques in that the code elements are localized in spatial frequency as well as in space. Pixel-to-pixel correlations are first removed by subtracting a lowpass filtered copy of the image from the image itself. The result is a net data compression since the difference, or error, image has low variance and entropy, and the low-pass filtered image may represented at reduced sample density. Further data compression is achieved by quantizing the difference image. These steps are then repeated to compress the low-pass image. Iteration of the process at appropriately expanded scales generates a pyramid data structure. The encoding process is equivalent to sampling the image with Laplacian operators of many scales. Thus, the code tends to enhance salient image features. A further advantage of the present code is that it is well suited for many image analysis tasks as well as for image compression. Fast algorithms are described for coding and decoding.

6,975 citations