scispace - formally typeset
Journal ArticleDOI

The Adiabatic Phase and Pancharatnam's Phase for Polarized Light

Michael V Berry
- 01 Nov 1987 - 
- Vol. 34, Iss: 11, pp 1401-1407
Reads0
Chats0
TLDR
In this article, the existence of the phase is attributed to the non-transitivity of Pancharatnam's connection between different states of polarization, and the precise relation is established using the algebra of spinors and 2 × 2 Hermitian matrices.
Abstract
In 1955 Pancharatnam showed that a cyclic change in the state of polarization of light is accompanied by a phase shift determined by the geometry of the cycle as represented on the Poincare sphere. The phase owes its existence to the non-transitivity of Pancharatnam's connection between different states of polarization. Using the algebra of spinors and 2 × 2 Hermitian matrices, the precise relation is established between Pancharatnam's phase and the recently discovered phase change for slowly cycled quantum systems. The polarization phase is an optical analogue of the Aharonov-Bohm effect. For slow changes of polarization, the connection leading to the phase is derived from Maxwell's equations for a twisted dielectric. Pancharatnam's phase is contrasted with the phase change of circularly polarized light whose direction is cycled (e.g. when guided in a coiled optical fibre).

read more

Citations
More filters
Journal ArticleDOI

Planar Photonics with Metasurfaces

TL;DR: Progress in the optics of metasurfaces is reviewed and promising applications for surface-confined planar photonics components are discussed and the studies of new, low-loss, tunable plasmonic materials—such as transparent conducting oxides and intermetallics—that can be used as building blocks for metAsurfaces will complement the exploration of smart designs and advanced switching capabilities.
Journal ArticleDOI

Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.

TL;DR: The results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy, with image qualities comparable to a state-of-the-art commercial objective.
Journal ArticleDOI

Dielectric gradient metasurface optical elements.

TL;DR: The experimental realization and operation of dielectric gradient metasurface optical elements capable of also achieving high efficiencies in transmission mode in the visible spectrum are described.
Journal ArticleDOI

Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media

TL;DR: An optical process in which the spin angular momentum carried by a circularly polarized light beam is converted into orbital angular momentum, leading to the generation of helical modes with a wave-front helicity controlled by the input polarization is demonstrated.
Journal ArticleDOI

Metasurfaces: From microwaves to visible

TL;DR: In this article, the basic physics and applications of planar metamaterials, often called metasurfaces, which are composed of optically thin and densely packed planar arrays of resonant or nearly resonant subwavelength elements, are reviewed.
References
More filters
Book

Principles of Optics

Max Born, +1 more
TL;DR: In this paper, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.

Principles of Optics

Max Born, +1 more
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Book

Electrodynamics of continuous media

TL;DR: In this article, the propagation of electromagnetic waves and X-ray diffraction of X rays in crystals are discussed. But they do not consider the effects of superconductivity on superconducting conductors.
Journal ArticleDOI

Quantal phase factors accompanying adiabatic changes

TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Journal ArticleDOI

Significance of Electromagnetic Potentials in the Quantum Theory

TL;DR: In this article, it was shown that there exist effects of potentials on charged particles, even in the region where all the fields (and therefore the forces on the particles) vanish.
Related Papers (5)