scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The aerodynamics of insect flight

01 Dec 2003-The Journal of Experimental Biology (J Exp Biol)-Vol. 206, Iss: 23, pp 4191-4208
TL;DR: The basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well as the different approaches used to model these phenomena are reviewed.
Abstract: The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well as the different approaches used to model these phenomena.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent progress in flapping wing aerodynamics and aeroelasticity is presented, where it is realized that a variation of the Reynolds number (wing sizing, flapping frequency, etc.) leads to a change in the leading edge vortex (LEV) and spanwise flow structures, which impacts the aerodynamic force generation.

877 citations

Journal ArticleDOI
Z. Jane Wang1
TL;DR: The results obtained by “taking the insects apart” helped to resolve previous puzzles about the force estimates in hovering insects, to ellucidate basic mechanisms essential to flapping flight, and to gain insights about the efficieny of flight.
Abstract: ▪ Abstract “What force does an insect wing generate?” Finding answers to this enduring question is an essential step toward our understanding of interactions of moving objects with fluids that enable most living species such as insects, birds, and fish to travel efficiently and us to follow similar suit with sails, oars, and airfoils. We give a brief history of research in insect flight and discuss recent findings in unsteady aerodynamics of flapping flight at intermediate range Reynolds numbers (10–104). In particular, we examine the unsteady mechanisms in uniform and accelerated motions, forward and hovering flight, as well as passive flight of free-falling objects. The results obtained by “taking the insects apart” helped us to resolve previous puzzles about the force estimates in hovering insects, to ellucidate basic mechanisms essential to flapping flight, and to gain insights about the efficieny of flight.

628 citations


Cites background from "The aerodynamics of insect flight"

  • ...…Ellington (1984), Spedding (1992), and Dickinson (1996); for additional discussions of some of the literatures reviewed here, see recent reviews by Sane (2003) and Lehman (2004); for a biological perspective of insect flight, see the books by Pringle (1957), Nachtigall (1974), Brodsky (1994),…...

    [...]

  • ...Nonetheless, it is instructive to see the difference in the values obtained under different conditions for different wings, as compiled in figure 9 of Sane (2003)....

    [...]

Book
01 Oct 2007
TL;DR: In this paper, the authors introduce fixed, rigid, flexible, and flapping wing aerodynamic models for fixed and flexible wing aerodynamics, and propose a flexible wing model for flapping aerodynamics.
Abstract: 1. Introduction 2. Fixed, rigid wing aerodynamics 3. Flexible wing aerodynamics 4. Flapping wing aerodynamics.

580 citations


Cites result from "The aerodynamics of insect flight"

  • ...This mechanism has been further observed by other researchers (Ellington, 1984c; Ennos, 1989; Wootton and Newman, 1979)....

    [...]

References
More filters
Book
01 Jan 1955
TL;DR: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part, denoted as turbulence as discussed by the authors, and the actual flow is very different from that of the Poiseuille flow.
Abstract: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one ob~erves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

17,321 citations

Book
01 Jan 1967
TL;DR: The dynamique des : fluides Reference Record created on 2005-11-18 is updated on 2016-08-08 and shows improvements in the quality of the data over the past decade.
Abstract: Preface Conventions and notation 1. The physical properties of fluids 2. Kinematics of the flow field 3. Equations governing the motion of a fluid 4. Flow of a uniform incompressible viscous fluid 5. Flow at large Reynolds number: effects of viscosity 6. Irrotational flow theory and its applications 7. Flow of effectively inviscid liquid with vorticity Appendices.

11,187 citations

Journal ArticleDOI
TL;DR: In this paper, the Navier-Stokes equation is derived for an inviscid fluid, and a finite difference method is proposed to solve the Euler's equations for a fluid flow in 3D space.
Abstract: This brief paper derives Euler’s equations for an inviscid fluid, summarizes the Cauchy momentum equation, derives the Navier-Stokes equation from that, and then talks about finite difference method approaches to solutions. Typical texts for this material are apparently Acheson, Elementary Fluid Dynamics and Landau and Lifschitz, Fluid Mechanics. 1. Basic Definitions We describe a fluid flow in three-dimensional space R as a vector field representing the velocity at all locations in the fluid. Concretely, then, a fluid flow is a function ~v : R× R → R that assigns to each point (t, ~x) in spacetime a velocity ~v(t, ~x) in space. In the special situation where ~v does not depend on t we say that the flow is steady. A trajectory or particle path is a curve ~x : R→ R such that for all t ∈ R, d dt ~x(t) = ~v(t, ~x(t)). Fix a t0 ∈ R; a streamline at time t0 is a curve ~x : R→ R such that for all t ∈ R, d dt ~x(t) = ~v(t0, ~x(t)). In the special case of steady flow the streamlines are constant across times t0 and any trajectory is a streamline. In non-steady flows, particle paths need not be streamlines. Consider the 2-dimensional example ~v = [− sin t cos t]>. At t0 = 0 the velocities all point up and the streamlines are vertical straight lines. At t0 = π/2 the velocities all point left and the streamlines are horizontal straight lines. Any trajectory is of the form ~x = [cos t + C1 sin t + C2] >; this traces out a radius-1 circle centered at [C1 C2] >. Indeed, all radius-1 circles in the plane arise as trajectories. These circles cross each other at many (in fact, all) points. If you find it counterintuitive that distinct trajectories can pass through a single point, remember that they do so at different times. 2. Acceleration Let f : R × R → R be some scalar field (such as temperature). Then ∂f/∂t is the rate of change of f at some fixed point in space. If we precompose f with a 1 Fluid Dynamics Math 211, Fall 2014, Carleton College trajectory ~x, then the chain rule gives us the rate of change of f with respect to time along that curve: D Dt f := d dt f(t, x(t), y(t), z(t)) = ∂f ∂t + ∂f ∂x dx dt + ∂f ∂y dy dt + ∂f ∂z dz dt = ( ∂ ∂t + dx dt ∂ ∂x + dy dt ∂ ∂y + dz dt ∂ ∂z ) f = ( ∂ ∂t + ~v · ∇ ) f. Intuitively, if ~x describes the trajectory of a small sensor for the quantity f (such as a thermometer), then Df/Dt gives the rate of change of the output of the sensor with respect to time. The ∂f/∂t term arises because f varies with time. The ~v ·∇f term arises because f is being measured at varying points in space. If we apply this idea to each component function of ~v, then we obtain an acceleration (or force per unit mass) vector field ~a(t, x) := D~v Dt = ∂~v ∂t + (~v · ∇)~v. That is, for any spacetime point (t, ~x), the vector ~a(t, ~x) is the acceleration of the particle whose trajectory happens to pass through ~x at time t. Let’s check that it agrees with our usual notion of acceleration. Suppose that a curve ~x describes the trajectory of a particle. The acceleration should be d dt d dt~x. By the definition of trajectory, d dt d dt ~x = d dt ~v(t, ~x(t)). The right-hand side is precisely D~v/Dt. Returning to our 2-dimensional example ~v = [− sin t cos t]>, we have ~a = [− cos t − sin t]>. Notice that ~v · ~a = 0. This is the well-known fact that in constant-speed circular motion the centripetal acceleration is perpendicular to the velocity. (In fact, the acceleration of any constant-speed trajectory is perpendicular to its velocity.) 3. Ideal Fluids An ideal fluid is one of constant density ρ, such that for any surface within the fluid the only stresses on the surface are normal. That is, there exists a scalar field p : R × R → R, called the pressure, such that for any surface element ∆S with outward-pointing unit normal vector ~n, the force exerted by the fluid inside ∆S on the fluid outside ∆S is p~n ∆S. The constant density condition implies that the fluid is incompressible, meaning ∇ · ~v = 0, as follows. For any region of space R, the rate of flow of mass out of the region is ∫∫ ∂R ρ~v · ~n dS = ∫∫∫

9,804 citations

Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
18 Jun 1999-Science
TL;DR: In this paper, the authors show that the enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture.
Abstract: The enhanced aerodynamic performance of insects results from an interaction of three distinct yet interactive mechanisms: delayed stall, rotational circulation, and wake capture. Delayed stall functions during the translational portions of the stroke, when the wings sweep through the air with a large angle of attack. In contrast, rotational circulation and wake capture generate aerodynamic forces during stroke reversals, when the wings rapidly rotate and change direction. In addition to contributing to the lift required to keep an insect aloft, these two rotational mechanisms provide a potent means by which the animal can modulate the direction and magnitude of flight forces during steering maneuvers. A comprehensive theory incorporating both translational and rotational mechanisms may explain the diverse patterns of wing motion displayed by different species of insects.

2,246 citations