scispace - formally typeset
Open AccessBook

The Algorithmic Foundations of Differential Privacy

Reads0
Chats0
TLDR
The preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example.
Abstract
The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.After motivating and discussing the meaning of differential privacy, the preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some astonishingly powerful computational results, there are still fundamental limitations — not just on what can be achieved with differential privacy but on what can be achieved with any method that protects against a complete breakdown in privacy. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power. Certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed.We then turn from fundamentals to applications other than queryrelease, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams is discussed.Finally, we note that this work is meant as a thorough introduction to the problems and techniques of differential privacy, but is not intended to be an exhaustive survey — there is by now a vast amount of work in differential privacy, and we can cover only a small portion of it.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Communication-Efficient Learning of Deep Networks from Decentralized Data

TL;DR: This work presents a practical method for the federated learning of deep networks based on iterative model averaging, and conducts an extensive empirical evaluation, considering five different model architectures and four datasets.
Proceedings ArticleDOI

Deep Learning with Differential Privacy

TL;DR: In this paper, the authors develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy, and demonstrate that they can train deep neural networks with nonconvex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
Proceedings ArticleDOI

Practical Secure Aggregation for Privacy-Preserving Machine Learning

TL;DR: In this paper, the authors proposed a secure aggregation of high-dimensional data for federated deep neural networks, which allows a server to compute the sum of large, user-held data vectors from mobile devices in a secure manner without learning each user's individual contribution.
Proceedings ArticleDOI

Privacy-Preserving Deep Learning

TL;DR: This paper presents a practical system that enables multiple parties to jointly learn an accurate neural-network model for a given objective without sharing their input datasets, and exploits the fact that the optimization algorithms used in modern deep learning, namely, those based on stochastic gradient descent, can be parallelized and executed asynchronously.
Journal ArticleDOI

Opportunities and obstacles for deep learning in biology and medicine.

TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
References
More filters
Book ChapterDOI

Calibrating noise to sensitivity in private data analysis

TL;DR: In this article, the authors show that for several particular applications substantially less noise is needed than was previously understood to be the case, and also show the separation results showing the increased value of interactive sanitization mechanisms over non-interactive.
Proceedings ArticleDOI

A theory of the learnable

TL;DR: This paper regards learning as the phenomenon of knowledge acquisition in the absence of explicit programming, and gives a precise methodology for studying this phenomenon from a computational viewpoint.
Book ChapterDOI

Differential privacy

TL;DR: In this article, the authors give a general impossibility result showing that a formalization of Dalenius' goal along the lines of semantic security cannot be achieved, and suggest a new measure, differential privacy, which, intuitively, captures the increased risk to one's privacy incurred by participating in a database.
Journal Article

Calibrating noise to sensitivity in private data analysis

TL;DR: The study is extended to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f, which is the amount that any single argument to f can change its output.
Journal ArticleDOI

Randomized response: a survey technique for eliminating evasive answer bias.

TL;DR: A survey technique for improving the reliability of responses to sensitive interview questions is described, which permits the respondent to answer "yes" or "no" to a question without the interviewer knowing what information is being conveyed by the respondent.