scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability

23 Jun 2021-Natural Product Reports (The Royal Society of Chemistry)-Vol. 38, Iss: 6, pp 1100-1108
TL;DR: The application of machine learning methods to natural product research is poised to accelerate the identification of new molecular entities that may be used to treat a variety of disease indications.
About: This article is published in Natural Product Reports.The article was published on 2021-06-23 and is currently open access. It has received 27 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: A roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes is provided and an outlook for future directions in the field is provided with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.

51 citations

Journal ArticleDOI
TL;DR: This Review discusses the opportunities and challenges associated with different bacterial sources, including cultivated, ecology-based and previously untapped bacterial ‘dark matter’, and newly developed computational tools and strategies to access biosynthetic novelty in bacterial genomes.

24 citations

Journal ArticleDOI
TL;DR: In this article , the authors discuss how metabolic engineering now raises reasonable expectations for the implementation of microbial cell factories, which may provide a sustainable approach for MNP-based drug supply in the near future.

24 citations

Journal ArticleDOI
TL;DR: An overview of the role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs is presented in this article.
Abstract: An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.

21 citations

References
More filters
Proceedings Article
Tomas Mikolov1, Ilya Sutskever1, Kai Chen1, Greg S. Corrado1, Jeffrey Dean1 
05 Dec 2013
TL;DR: This paper presents a simple method for finding phrases in text, and shows that learning good vector representations for millions of phrases is possible and describes a simple alternative to the hierarchical softmax called negative sampling.
Abstract: The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of the frequent words we obtain significant speedup and also learn more regular word representations. We also describe a simple alternative to the hierarchical softmax called negative sampling. An inherent limitation of word representations is their indifference to word order and their inability to represent idiomatic phrases. For example, the meanings of "Canada" and "Air" cannot be easily combined to obtain "Air Canada". Motivated by this example, we present a simple method for finding phrases in text, and show that learning good vector representations for millions of phrases is possible.

24,012 citations

Journal ArticleDOI
TL;DR: A significant comparison to the structural classification database that led to the creation of 825 new families based on their set of uncharacterized families (EUFs) was carried out and Pfam entries were connected to the Sequence Ontology (SO) through mapping of the Pfam type definitions to SO terms.
Abstract: The last few years have witnessed significant changes in Pfam (https://pfam.xfam.org). The number of families has grown substantially to a total of 17,929 in release 32.0. New additions have been coupled with efforts to improve existing families, including refinement of domain boundaries, their classification into Pfam clans, as well as their functional annotation. We recently began to collaborate with the RepeatsDB resource to improve the definition of tandem repeat families within Pfam. We carried out a significant comparison to the structural classification database, namely the Evolutionary Classification of Protein Domains (ECOD) that led to the creation of 825 new families based on their set of uncharacterized families (EUFs). Furthermore, we also connected Pfam entries to the Sequence Ontology (SO) through mapping of the Pfam type definitions to SO terms. Since Pfam has many community contributors, we recently enabled the linking between authorship of all Pfam entries with the corresponding authors' ORCID identifiers. This effectively permits authors to claim credit for their Pfam curation and link them to their ORCID record.

3,617 citations

Journal ArticleDOI
15 Jan 2020-Nature
TL;DR: It is shown that a neural network can be trained to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions, and the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures.
Abstract: Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)-a blind assessment of the state of the field-AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7.

2,097 citations

Journal ArticleDOI
TL;DR: AntiSMASH 5 adds detection rules for clusters encoding the biosynthesis of acyl-amino acids, β-lactones, fungal RiPPs, RaS-Ri PPs, polybrominated diphenyl ethers, C-nucleosides, PPY-like ketones and lipolanthines and provides more detailed predictions for type II polyketide synthase-encoding gene clusters.
Abstract: Secondary metabolites produced by bacteria and fungi are an important source of antimicrobials and other bioactive compounds. In recent years, genome mining has seen broad applications in identifying and characterizing new compounds as well as in metabolic engineering. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' (https://antismash.secondarymetabolites.org) has assisted researchers in this, both as a web server and a standalone tool. It has established itself as the most widely used tool for identifying and analysing biosynthetic gene clusters (BGCs) in bacterial and fungal genome sequences. Here, we present an entirely redesigned and extended version 5 of antiSMASH. antiSMASH 5 adds detection rules for clusters encoding the biosynthesis of acyl-amino acids, β-lactones, fungal RiPPs, RaS-RiPPs, polybrominated diphenyl ethers, C-nucleosides, PPY-like ketones and lipolanthines. For type II polyketide synthase-encoding gene clusters, antiSMASH 5 now offers more detailed predictions. The HTML output visualization has been redesigned to improve the navigation and visual representation of annotations. We have again improved the runtime of analysis steps, making it possible to deliver comprehensive annotations for bacterial genomes within a few minutes. A new output file in the standard JavaScript object notation (JSON) format is aimed at downstream tools that process antiSMASH results programmatically.

2,084 citations

Journal ArticleDOI
TL;DR: An overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data is provided.
Abstract: The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets. Here, we provide an overview of machine learning applications for the analysis of genome sequencing data sets, including the annotation of sequence elements and epigenetic, proteomic or metabolomic data. We present considerations and recurrent challenges in the application of supervised, semi-supervised and unsupervised machine learning methods, as well as of generative and discriminative modelling approaches. We provide general guidelines to assist in the selection of these machine learning methods and their practical application for the analysis of genetic and genomic data sets.

1,317 citations