scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Asian Summer Monsoon: An Intercomparison of CMIP5 vs. CMIP3 Simulations of the Late 20th Century

TL;DR: In this paper, the authors evaluated the performance of the Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth century.
Abstract: The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Nino3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space–time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.
Citations
More filters
Journal ArticleDOI
TL;DR: Yukimoto et al. as mentioned in this paper developed the new Meteorological Research Institute Earth System Model version 2.0 (MRI-ESM2.0) based on previous models, MRI-CGCM3 and MRI-ESm1, which participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5).
Abstract: The new Meteorological Research Institute Earth System Model version 2.0 (MRI-ESM2.0) has been developed based on previous models, MRI-CGCM3 and MRI-ESM1, which participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). These models underwent numerous improvements meant for highly accurate climate reproducibility. This paper describes model formulation updates and evaluates basic performance of its physical components. The new model has nominal horizontal resolutions of 100 km for atmosphere and ocean components, similar to the previous models. The atmospheric vertical resolution is 80 layers, which is enhanced from the 48 layers of its predecessor. Accumulation of various improvements concerning clouds, such as a new stratocumulus cloud scheme, led to remarkable reduction in errors in shortwave, longwave, and net radiation at the top of the atmosphere. The resulting errors are sufficiently small compared with those in the CMIP5 models. The improved radiation distribution brings the accurate meridional heat transport required for the ocean and contributes to a reduced surface air temperature (SAT) bias. MRI-ESM2.0 displays realistic reproduction of both mean climate and interannual variability. For instance, the stratospheric quasi-biennial oscillation can now be realistically expressed through the enhanced vertical resolution and introduction of non-orographic gravity wave drag parameterization. For the historical experiment, MRI-ESM2.0 reasonably reproduces global SAT change Corresponding author: Seiji Yukimoto, Meteorological Research Institute, 1-1, Nagamine, Tsukuba, 305-0052, Japan E-mail: yukimoto@mri-jma.go.jp J-stage Advance Published Date: 18 June 2019 Journal of the Meteorological Society of Japan Vol. 97, No. 5 932

401 citations


Cites background from "The Asian Summer Monsoon: An Interc..."

  • ...Although representation of the summer monsoon in East Asia is improving (Sperber et al. 2013; Song and Zhou 2014), the monsoon rain belt known as the Baiu, which significantly influences Japanese water resources and industries, cannot be simulated with sufficient realism even by state-of-the-art global climate models (Kusunoki and Arakawa 2015)....

    [...]

  • ...Although representation of the summer monsoon in East Asia is improving (Sperber et al. 2013; Song and Zhou 2014), the monsoon rain belt known as the Baiu, which significantly influences Japanese water resources and industries, cannot be simulated with sufficient realism even by state-of-the-art…...

    [...]

Journal ArticleDOI
TL;DR: The authors provided a new view of global and regional monsoonal rainfall, and their changes in the 21st century under RCP4.5 and RCP8.5 scenarios as projected by 29 climate models that participated in the Coupled Model Intercomparison Project phase 5.
Abstract: [1] We provide a new view of global and regional monsoonal rainfall, and their changes in the 21st century under RCP4.5 and RCP8.5 scenarios as projected by 29 climate models that participated in the Coupled Model Intercomparison Project phase 5. The model results show that the global monsoon area defined by the annual range in precipitation is projected to expand mainly over the central to eastern tropical Pacific, the southern Indian Ocean, and eastern Asia. The global monsoon precipitation intensity and the global monsoon total precipitation are also projected to increase. Indices of heavy precipitation are projected to increase much more than those for mean precipitation. Over the Asian monsoon domain, projected changes in extreme precipitation indices are larger than over other monsoon domains, indicating the strong sensitivity of Asian monsoon to global warming. Over the American and African monsoon regions, projected future changes in mean precipitation are rather modest, but those in precipitation extremes are large. Models project that monsoon retreat dates will delay, while onset dates will either advance or show no change, resulting in lengthening of the monsoon season. However, models’ limited ability to reproduce the present monsoon climate and the large scatter among the model projections limit the confidence in the results. The projected increase of the global monsoon precipitation can be attributed to an increase of moisture convergence due to increased surface evaporation and water vapor in the air column although offset to a certain extent by the weakening of the monsoon circulation.

350 citations

Journal ArticleDOI
TL;DR: In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Concerning on Climate Change (UNFCCC) invited the Inter- governmental Panel on Climate change (IPCC).
Abstract: In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Con- vention on Climate Change (UNFCCC) invited the Inter- governmental Panel on Climate Change ...

348 citations

Journal ArticleDOI
TL;DR: In this paper, a methodology for selecting from the available CMIP5 models in order to identify a set of 8-10 GCMs for use in regional climate change assessments is presented.
Abstract: The unprecedented availability of 6-hourly data from a multi-model GCM ensemble in the CMIP5 data archive presents the new opportunity to dynamically downscale multiple GCMs to develop high-resolution climate projections relevant to detailed assessment of climate vulnerability and climate change impacts. This enables the development of high resolution projections derived from the same set of models that are used to characterise the range of future climate changes at the global and large-scale, and as assessed in the IPCC AR5. However, the technical and human resource required to dynamically-downscale the full CMIP5 ensemble are significant and not necessary if the aim is to develop scenarios covering a representative range of future climate conditions relevant to a climate change risk assessment. This paper illustrates a methodology for selecting from the available CMIP5 models in order to identify a set of 8–10 GCMs for use in regional climate change assessments. The selection focuses on their suitability across multiple regions—Southeast Asia, Europe and Africa. The selection (a) avoids the inclusion of the least realistic models for each region and (b) simultaneously captures the maximum possible range of changes in surface temperature and precipitation for three continental-scale regions. We find that, of the CMIP5 GCMs with 6-hourly fields available, three simulate the key regional aspects of climate sufficiently poorly that we consider the projections from those models ‘implausible’ (MIROC-ESM, MIROC-ESM-CHEM, and IPSL-CM5B-LR). From the remaining models, we demonstrate a selection methodology which avoids the poorest models by including them in the set only if their exclusion would significantly reduce the range of projections sampled. The result of this process is a set of models suitable for using to generate downscaled climate change information for a consistent multi-regional assessment of climate change impacts and adaptation.

341 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of teleconnection patterns on the precipitation anomaly in the eastern part of East Asia and found that the effect was mainly dominated by the Pacific-Japan and Silk-Road teleconnections.
Abstract: East Asia is greatly impacted by drought. North and southwest China are the regions with the highest drought frequency and maximum duration. At the interannual time scale, drought in the eastern part of East Asia is mainly dominated by two teleconnection patterns (i.e., the Pacific–Japan and Silk Road teleconnections). The former is forced by SST anomalies in the western North Pacific and the tropical Indian Ocean during El Nino decaying year summers. The precipitation anomaly features a meridional tripolar or sandwich pattern. The latter is forced by Indian monsoon heating and is a propagation of stationary Rossby waves along the Asian jet in the upper troposphere. It can significantly influence the precipitation over north China. Regarding the long-term trend, there exists an increasing drought trend over central parts of northern China and a decreasing tendency over northwestern China from the 1950s to the present. The increased drought in north China results from a weakened tendency of summer ...

271 citations


Cites background from "The Asian Summer Monsoon: An Interc..."

  • ...The recent work by Sperber et al. (2013) showed that the climate models that participated in CMIP5 show better performance in simulating East Asian monsoon circulation and precipitation but still cannot satisfactorily reproduce its onset and retreat....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.
Abstract: The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided b...

28,145 citations

Journal ArticleDOI
TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Abstract: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades...

12,384 citations


"The Asian Summer Monsoon: An Interc..." refers background or methods in this paper

  • ...Table 1 contains basic information on the CMIP5 (Taylor et al. 2012) and CMIP3 models (Meehl et al....

    [...]

  • ...(2011) and Turner and Annamalai (2012). By its very nature, simulating the monsoon requires models with coupling between the atmosphere, the ocean, and land....

    [...]

  • ...The challenges of modeling the monsoon and making climate change projections have been discussed in Turner et al. (2011) and Turner and Annamalai (2012)....

    [...]

  • ...Table 1 contains basic information on the CMIP5 (Taylor et al. 2012) and CMIP3 models (Meehl et al. 2007) used in this study, including horizontal and vertical resolution of the atmospheric and oceanic components....

    [...]

Journal ArticleDOI
TL;DR: ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions as mentioned in this paper.
Abstract: ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions. The observing system changed considerably over this re-analysis period, with assimilable data provided by a succession of satellite-borne instruments from the 1970s onwards, supplemented by increasing numbers of observations from aircraft, ocean-buoys and other surface platforms, but with a declining number of radiosonde ascents since the late 1980s. The observations used in ERA-40 were accumulated from many sources. The first part of this paper describes the data acquisition and the principal changes in data type and coverage over the period. It also describes the data assimilation system used for ERA-40. This benefited from many of the changes introduced into operational forecasting since the mid-1990s, when the systems used for the 15-year ECMWF re-analysis (ERA-15) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis were implemented. Several of the improvements are discussed. General aspects of the production of the analyses are also summarized. A number of results indicative of the overall performance of the data assimilation system, and implicitly of the observing system, are presented and discussed. The comparison of background (short-range) forecasts and analyses with observations, the consistency of the global mass budget, the magnitude of differences between analysis and background fields and the accuracy of medium-range forecasts run from the ERA-40 analyses are illustrated. Several results demonstrate the marked improvement that was made to the observing system for the southern hemisphere in the 1970s, particularly towards the end of the decade. In contrast, the synoptic quality of the analysis for the northern hemisphere is sufficient to provide forecasts that remain skilful well into the medium range for all years. Two particular problems are also examined: excessive precipitation over tropical oceans and a too strong Brewer-Dobson circulation, both of which are pronounced in later years. Several other aspects of the quality of the re-analyses revealed by monitoring and validation studies are summarized. Expectations that the ‘second-generation’ ERA-40 re-analysis would provide products that are better than those from the firstgeneration ERA-15 and NCEP/NCAR re-analyses are found to have been met in most cases. © Royal Meteorological Society, 2005. The contributions of N. A. Rayner and R. W. Saunders are Crown copyright.

7,110 citations

Journal ArticleDOI
TL;DR: In this article, statistical methods in the Atmospheric Sciences are used to estimate the probability of a given event to be a hurricane or tropical cyclone, and the probability is determined by statistical methods.
Abstract: (2007). Statistical Methods in the Atmospheric Sciences. Journal of the American Statistical Association: Vol. 102, No. 477, pp. 380-380.

7,052 citations


"The Asian Summer Monsoon: An Interc..." refers background in this paper

  • ...It can be viewed as a hit rate for the quantity being forecast, after removing correct ‘no’ forecasts (d) from consideration’’ (Wilks 1995, p. 240)....

    [...]

Book
03 Jun 2011
TL;DR: The second edition of "Statistical Methods in the Atmospheric Sciences, Second Edition" as mentioned in this paper presents and explains techniques used in atmospheric data summarization, analysis, testing, and forecasting.
Abstract: Praise for the First Edition: 'I recommend this book, without hesitation, as either a reference or course text...Wilks' excellent book provides a thorough base in applied statistical methods for atmospheric sciences' - "BAMS" ("Bulletin of the American Meteorological Society"). Fundamentally, statistics is concerned with managing data and making inferences and forecasts in the face of uncertainty. It should not be surprising, therefore, that statistical methods have a key role to play in the atmospheric sciences. It is the uncertainty in atmospheric behavior that continues to move research forward and drive innovations in atmospheric modeling and prediction. This revised and expanded text explains the latest statistical methods that are being used to describe, analyze, test and forecast atmospheric data. It features numerous worked examples, illustrations, equations, and exercises with separate solutions. "Statistical Methods in the Atmospheric Sciences, Second Edition" will help advanced students and professionals understand and communicate what their data sets have to say, and make sense of the scientific literature in meteorology, climatology, and related disciplines. This book presents and explains techniques used in atmospheric data summarization, analysis, testing, and forecasting. Chapters feature numerous worked examples and exercises. Model Output Statistic (MOS) includes an introduction to the Kalman filter, an approach that tolerates frequent model changes. It includes a detailed section on forecast verification, including statistical inference, diagrams, and other methods. It provides an expanded treatment of resampling tests within nonparametric tests. It offers an updated treatment of ensemble forecasting. It provides expanded coverage of key analysis techniques, such as principle component analysis, canonical correlation analysis, discriminant analysis, and cluster analysis. It includes careful updates and edits throughout, based on users' feedback.

6,768 citations

Related Papers (5)