scispace - formally typeset
Journal ArticleDOI

The ball-pivoting algorithm for surface reconstruction

Reads0
Chats0
TLDR
The Ball-Pivoting Algorithm is applied to datasets of millions of points representing actual scans of complex 3D objects and the quality of the results obtained compare favorably with existing techniques.
Abstract
The Ball-Pivoting Algorithm (BPA) computes a triangle mesh interpolating a given point cloud. Typically, the points are surface samples acquired with multiple range scans of an object. The principle of the BPA is very simple: Three points form a triangle if a ball of a user-specified radius p touches them without containing any other point. Starting with a seed triangle, the ball pivots around an edge (i.e., it revolves around the edge while keeping in contact with the edge's endpoints) until it touches another point, forming another triangle. The process continues until all reachable edges have been tried, and then starts from another seed triangle, until all points have been considered. The process can then be repeated with a ball of larger radius to handle uneven sampling densities. We applied the BPA to datasets of millions of points representing actual scans of complex 3D objects. The relatively small amount of memory required by the BPA, its time efficiency, and the quality of the results obtained compare favorably with existing techniques.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Poisson surface reconstruction

TL;DR: A spatially adaptive multiscale algorithm whose time and space complexities are proportional to the size of the reconstructed model, and which reduces to a well conditioned sparse linear system.
Proceedings ArticleDOI

MeshLab: an Open-Source Mesh Processing Tool

TL;DR: The architecture of MeshLab, an open source, extensible, mesh processing system that has been developed at the Visual Computing Lab of the ISTI-CNR with the helps of tens of students is described.
Proceedings ArticleDOI

Learning Implicit Fields for Generative Shape Modeling

TL;DR: In this paper, an implicit field is used to assign a value to each point in 3D space, so that a shape can be extracted as an iso-surface, and a binary classifier is trained to perform this assignment.
Posted Content

Occupancy Networks: Learning 3D Reconstruction in Function Space

TL;DR: This paper proposes Occupancy Networks, a new representation for learning-based 3D reconstruction methods that encodes a description of the 3D output at infinite resolution without excessive memory footprint, and validate that the representation can efficiently encode 3D structure and can be inferred from various kinds of input.
Proceedings ArticleDOI

Occupancy Networks: Learning 3D Reconstruction in Function Space

TL;DR: In this paper, the authors propose Occupancy Networks, which implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier, which can be used for learning-based 3D reconstruction methods.
References
More filters
Proceedings ArticleDOI

Marching cubes: A high resolution 3D surface construction algorithm

TL;DR: In this paper, a divide-and-conquer approach is used to generate inter-slice connectivity, and then a case table is created to define triangle topology using linear interpolation.
Proceedings ArticleDOI

A volumetric method for building complex models from range images

TL;DR: This paper presents a volumetric method for integrating range images that is able to integrate a large number of range images yielding seamless, high-detail models of up to 2.6 million triangles.
Proceedings ArticleDOI

A signal processing approach to fair surface design

TL;DR: A very simple surface signal low-pass filter algorithm that applies to surfaces of arbitrary topology that is a linear time and space complexity algorithm and a very effective fair surface design technique.
Journal ArticleDOI

Three-dimensional alpha shapes

TL;DR: This article introduces the formal notion of the family of α-shapes of a finite point set in R 3 .
Proceedings ArticleDOI

Zippered polygon meshes from range images

TL;DR: A method for combining a collection of range images into a single polygonal mesh that completely describes an object to the extent that it is visible from the outside is presented.