scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The basics of epithelial-mesenchymal transition

01 Jun 2009-Journal of Clinical Investigation (American Society for Clinical Investigation)-Vol. 119, Iss: 6, pp 1420-1428
TL;DR: Processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias and the identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes.
Abstract: The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations


Cites background from "The basics of epithelial-mesenchyma..."

  • ...The first step is represented by epithelial-mesenchymal transition, in which cancer cells acquire fibroblastoid characteristics that increase their motility and allow them to invade epithelial linings/basal membranes and reach efferent blood vessels or lymphatics (Kalluri and Weinberg, 2009)....

    [...]

Journal ArticleDOI
TL;DR: A combination of automated approaches and expert curation is used to develop a collection of "hallmark" gene sets, derived from multiple "founder" sets, that conveys a specific biological state or process and displays coherent expression in MSigDB.
Abstract: The Molecular Signatures Database (MSigDB) is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis. Since its creation, MSigDB has grown beyond its roots in metabolic disease and cancer to include >10,000 gene sets. These better represent a wider range of biological processes and diseases, but the utility of the database is reduced by increased redundancy across, and heterogeneity within, gene sets. To address this challenge, here we use a combination of automated approaches and expert curation to develop a collection of “hallmark” gene sets as part of MSigDB. Each hallmark in this collection consists of a “refined” gene set, derived from multiple “founder” sets, that conveys a specific biological state or process and displays coherent expression. The hallmarks effectively summarize most of the relevant information of the original founder sets and, by reducing both variation and redundancy, provide more refined and concise inputs for gene set enrichment analysis.

6,062 citations


Additional excerpts

  • ...422 Cell Systems 1, 417–425, December 23, 2015 a2015 Elsevier Inc N-cadherin and the Epithelial-Mesenchymal Transition N-cadherin is a marker of mesenchymal cells (Figure 3E) (Zeisberg and Neilson, 2009) and the epithelial-mesenchymal transition (EMT) (Kalluri and Weinberg, 2009)....

    [...]

Journal ArticleDOI
TL;DR: The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues, and the convergence of signalling pathways is essential for EMT.
Abstract: The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.

6,036 citations

Journal ArticleDOI
TL;DR: A method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumour samples and prediction accuracy is corroborated using 3,809 transcriptional profiles available elsewhere in the public domain.
Abstract: Infiltrating stromal and immune cells form the major fraction of normal cells in tumour tissue and not only perturb the tumour signal in molecular studies but also have an important role in cancer biology. Here we describe 'Estimation of STromal and Immune cells in MAlignant Tumours using Expression data' (ESTIMATE)--a method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumour samples. ESTIMATE scores correlate with DNA copy number-based tumour purity across samples from 11 different tumour types, profiled on Agilent, Affymetrix platforms or based on RNA sequencing and available through The Cancer Genome Atlas. The prediction accuracy is further corroborated using 3,809 transcriptional profiles available elsewhere in the public domain. The ESTIMATE method allows consideration of tumour-associated normal cells in genomic and transcriptomic studies. An R-library is available on https://sourceforge.net/projects/estimateproject/.

4,651 citations

Journal ArticleDOI
02 Apr 2010-Cell
TL;DR: In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner.

4,185 citations


Cites background from "The basics of epithelial-mesenchyma..."

  • ...Initiation of Neoplastic Progression The initial process of tumor invasion shares many characteristics with the epithelial-mesenchymal transition (EMT) program during developmental processes including loss of cell-cell adhesion and increased cellular mobility (Kalluri and Weinberg, 2009)....

    [...]

References
More filters
Journal ArticleDOI
07 Jan 2000-Cell
TL;DR: This work has been supported by the Department of the Army and the National Institutes of Health, and the author acknowledges the support and encouragement of the National Cancer Institute.

28,811 citations

Journal ArticleDOI
16 May 2008-Cell
TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.

8,052 citations

Journal ArticleDOI
Jean Paul Thiery1
TL;DR: Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.
Abstract: Without epithelial–mesenchymal transitions, in which polarized epithelial cells are converted into motile cells, multicellular organisms would be incapable of getting past the blastula stage of embryonic development. However, this important developmental programme has a more sinister role in tumour progression. Epithelial–mesenchymal transition provides a new basis for understanding the progression of carcinoma towards dedifferentiated and more malignant states.

6,362 citations

Journal ArticleDOI
13 Jun 2003-Cell
TL;DR: Current understanding on the mechanisms of TGF-β signaling from cell membrane to the nucleus is presented and the transcriptional regulation of target gene expression is reviewed.

5,340 citations

Journal ArticleDOI
TL;DR: Understanding how mesenchymal cells arise from an epithelial default status will also have a strong impact in unravelling the mechanisms that control fibrosis and cancer progression.
Abstract: Epithelial-mesenchymal transition is an indispensable mechanism during morphogenesis, as without mesenchymal cells, tissues and organs will never be formed. However, epithelial-cell plasticity, coupled to the transient or permanent formation of mesenchyme, goes far beyond the problem of cell-lineage segregation. Understanding how mesenchymal cells arise from an epithelial default status will also have a strong impact in unravelling the mechanisms that control fibrosis and cancer progression.

3,804 citations