scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The biology of Theileria parva and control of East Coast fever - Current status and future trends.

TL;DR: The Muguga cocktail ITM vaccine, which provides broad-spectrum immunity to ECF, is now a registered product in three countries in eastern Africa and effort is directed at improving and scaling up the production process to make this vaccine more widely available on a commercial basis in the region.
About: This article is published in Ticks and Tick-borne Diseases.The article was published on 2016-06-01 and is currently open access. It has received 94 citations till now. The article focuses on the topics: Theileria parva & East Coast fever.
Citations
More filters
Journal ArticleDOI
TL;DR: Mechanistic studies revealed a likely radical chain process via the formation of a dearomatized intermediate, providing a deeper understanding of the factors governing the reactivity of these radical forebears, proving its applicability.
Abstract: Under oxidative conditions, 1,4-dihydropyridines (DHPs) undergo a homolytic cleavage, forming exclusively a Csp3-centered radical that can engage in the C–H alkylation of heterocyclic bases and 1,4-quinones. DHPs are readily prepared from aldehydes, and considering that aldehydes normally require harsh reaction conditions to take part in such transformations, with mixtures of alkylated and acylated products often being obtained, this net decarbonylative alkylation approach becomes particularly useful. The present method takes place under mild reaction conditions and requires only persulfate as a stoichiometric oxidant, making the procedure suitable for the late-stage C–H alkylation of complex molecules. Notably, structurally complex pharmaceutical agents could be functionalized or prepared with this protocol, such as the antimalarial Atovaquone and antitheilerial Parvaquone, thus evidencing its applicability. Mechanistic studies revealed a likely radical chain process via the formation of a dearomatized i...

181 citations

Journal ArticleDOI
TL;DR: Many fundamental differences in this general consensus occur and this review identifies variables that should be analyzed prior to further development of specific anti-piroplasm strategies, including the attractive targeting of life cycle stages of Babesia or Theileria tick vectors.
Abstract: Although apicomplexan parasites of the group Piroplasmida represent commonly identified global risks to both animals and humans, detailed knowledge of their life cycles is surprisingly limited. Such a discrepancy results from incomplete literature reports, nomenclature disunity and recently, from large numbers of newly described species. This review intends to collate and summarize current knowledge with respect to piroplasm phylogeny. Moreover, it provides a comprehensive view of developmental events of Babesia, Theileria, and Cytauxzoon representative species, focusing on uniform consensus of three consecutive phases: (i) schizogony and merogony, asexual multiplication in blood cells of the vertebrate host; (ii) gamogony, sexual reproduction inside the tick midgut, later followed by invasion of kinetes into the tick internal tissues; and (iii) sporogony, asexual proliferation in tick salivary glands resulting in the formation of sporozoites. However, many fundamental differences in this general consensus occur and this review identifies variables that should be analyzed prior to further development of specific anti-piroplasm strategies, including the attractive targeting of life cycle stages of Babesia or Theileria tick vectors.

88 citations

Journal ArticleDOI
TL;DR: Advances in development of subunit vaccines against one parasite species are likely to be readily applicable to the other, and comparison of the schizont antigen orthologues has demonstrated that some of them display high levels of sequence conservation.
Abstract: Summary Despite having different cell tropism, the pathogenesis and immunobiology of the diseases caused by Theileria parva and T. annulata are remarkably similar. Live vaccines have been available for both parasites for over 40 years, but although they provide strong protection, practical disadvantages have limited their widespread application. Efforts to develop alternative vaccines using defined parasite antigens have focused on the sporozoite and intracellular schizont stages of the parasites. Experimental vaccination studies using viral vectors expressing T. parva schizont antigens and T. parva and T. annulata sporozoite antigens incorporated in adjuvant have, in each case, demonstrated protection against parasite challenge in a proportion of vaccinated animals. Current work is investigating alternative antigen delivery systems in an attempt to improve the levels of protection. The genome architecture and protein coding capacity of T. parva and T. annulata are remarkably similar. The major sporozoite surface antigen in both species and most of the schizont antigens are encoded by orthologous genes. The former have been shown to induce species cross-reactive neutralising antibodies and comparison of the schizont antigen orthologues has demonstrated that some of them display high levels of sequence conservation. Hence, advances in development of subunit vaccines against one parasite species are likely to be readily applicable to the other. This article is protected by copyright. All rights reserved.

68 citations

Journal ArticleDOI
TL;DR: Tens of thousands of variants are identified between NF54 and the three heterologous strains, including SNPs, indels, and small structural variants that fall in regulatory and immunologically important regions, including transcription factors and pre-erythrocytic antigens that may be key for sporozoite vaccine-induced protection.
Abstract: Plasmodium falciparum (Pf) whole-organism sporozoite vaccines have been shown to provide significant protection against controlled human malaria infection (CHMI) in clinical trials. Initial CHMI studies showed significantly higher durable protection against homologous than heterologous strains, suggesting the presence of strain-specific vaccine-induced protection. However, interpretation of these results and understanding of their relevance to vaccine efficacy have been hampered by the lack of knowledge on genetic differences between vaccine and CHMI strains, and how these strains are related to parasites in malaria endemic regions. Whole genome sequencing using long-read (Pacific Biosciences) and short-read (Illumina) sequencing platforms was conducted to generate de novo genome assemblies for the vaccine strain, NF54, and for strains used in heterologous CHMI (7G8 from Brazil, NF166.C8 from Guinea, and NF135.C10 from Cambodia). The assemblies were used to characterize sequences in each strain relative to the reference 3D7 (a clone of NF54) genome. Strains were compared to each other and to a collection of clinical isolates (sequenced as part of this study or from public repositories) from South America, sub-Saharan Africa, and Southeast Asia. While few variants were detected between 3D7 and NF54, we identified tens of thousands of variants between NF54 and the three heterologous strains. These variants include SNPs, indels, and small structural variants that fall in regulatory and immunologically important regions, including transcription factors (such as PfAP2-L and PfAP2-G) and pre-erythrocytic antigens that may be key for sporozoite vaccine-induced protection. Additionally, these variants directly contributed to diversity in immunologically important regions of the genomes as detected through in silico CD8+ T cell epitope predictions. Of all heterologous strains, NF135.C10 had the highest number of unique predicted epitope sequences when compared to NF54. Comparison to global clinical isolates revealed that these four strains are representative of their geographic origin despite long-term culture adaptation; of note, NF135.C10 is from an admixed population, and not part of recently formed subpopulations resistant to artemisinin-based therapies present in the Greater Mekong Sub-region. These results will assist in the interpretation of vaccine efficacy of whole-organism vaccines against homologous and heterologous CHMI.

51 citations


Cites background from "The biology of Theileria parva and ..."

  • ...In addition, the third vaccine strain in the Muguga Cocktail is quite distinct from the other two, with~5 SNPs/kb [87] , or about twice the SNP density seen between NF54 and other PfSPZ strains....

    [...]

Journal ArticleDOI
TL;DR: Three possible phenotypes (haemolytic analysis; measures of skin hypersensitivity reactions; simplified artificial tick infestations) are recommended to be further developed to determine their practical feasibility for consistently, cost-effectively and reliably measuring cattle tick resistance in thousands of individual animals in commercial and smallholder farmer herds in tropical and subtropical areas globally.
Abstract: About 80% of the world’s cattle are affected by ticks and tick-borne diseases, both of which cause significant production losses. Cattle host resistance to ticks is the most important factor affecting the economics of tick control, but it is largely neglected in tick-control programs due to technical difficulties and costs associated with identifying individual-animal variation in resistance. The present paper reviews the scientific literature to identify factors affecting resistance of cattle to ticks and the biological mechanisms of host tick resistance, to develop alternative phenotype(s) for tick resistance. If new cost-effective phenotype(s) can be developed and validated, then tick resistance of cattle could be genetically improved using genomic selection, and incorporated into breeding objectives to simultaneously improve cattle productive attributes and tick resistance. The phenotype(s) could also be used to improve tick control by using cattle management. On the basis of the present review, it is recommended that three possible phenotypes (haemolytic analysis; measures of skin hypersensitivity reactions; simplified artificial tick infestations) be further developed to determine their practical feasibility for consistently, cost-effectively and reliably measuring cattle tick resistance in thousands of individual animals in commercial and smallholder farmer herds in tropical and subtropical areas globally. During evaluation of these potential new phenotypes, additional measurements should be included to determine the possibility of developing a volatile-based resistance phenotype, to simultaneously improve cattle resistance to both ticks and biting flies. Because the current measurements of volatile chemistry do not satisfy the requirements of a simple, cost-effective phenotype for use in commercial cattle herds, consideration should also be given to inclusion of potentially simpler measures to enable indirect genetic selection for volatile-based resistance to ticks.

39 citations


Cites background from "The biology of Theileria parva and ..."

  • ...East Coast fever is considered to have the largest economic impact on cattle in Africa, with an estimated 1 000 000 deaths per annum (Nene et al. 2016)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: A timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved are presented.
Abstract: The molecular details of antigen processing and presentation by MHC class I and class II molecules have been studied extensively for almost three decades. Although the basic principles of these processes were laid out approximately 10 years ago, the recent years have revealed many details and provided new insights into their control and specificity. MHC molecules use various biochemical reactions to achieve successful presentation of antigenic fragments to the immune system. Here we present a timely evaluation of the biology of antigen presentation and a survey of issues that are considered unresolved. The continuing flow of new details into our understanding of the biology of MHC class I and class II antigen presentation builds a system involving several cell biological processes, which is discussed in this Review.

1,571 citations


"The biology of Theileria parva and ..." refers background in this paper

  • ...These peptides, usually from 8 to 9 amino acid residues in length, are derived from proteosomal degradation of antigens and bind to a peptide-binding groove in the MHC molecule (reviewed by Neefjes et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection, finding some vaccines have no true correlates, but only useful surrogates, for an unknown protective response.
Abstract: This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection. Although the immune system is redundant, almost all current vaccines work through antibodies in serum or on mucosa that block infection or bacteremia/viremia and thus provide a correlate of protection. The functional characteristics of antibodies, as well as quantity, are important. Antibody may be highly correlated with protection or synergistic with other functions. Immune memory is a critical correlate: effector memory for short-incubation diseases and central memory for long-incubation diseases. Cellular immunity acts to kill or suppress intracellular pathogens and may also synergize with antibody. For some vaccines, we have no true correlates, but only useful surrogates, for an unknown protective response.

1,350 citations


"The biology of Theileria parva and ..." refers background in this paper

  • ...Efforts are underway to determine if different ypes of correlates of immunity (Plotkin, 2010) can be develped....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and Hla-G, and is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules.
Abstract: Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide–MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method’s ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan .

699 citations


"The biology of Theileria parva and ..." refers background or methods in this paper

  • ...Based on such parameters NetMHCpan ssigns a score to peptide sequences that can bind to a given MHC olecule (Hoof et al., 2009)....

    [...]

  • ...A role for NetMHCpan in the identification and haracterization of CTL epitopes The NetMHCpan algorithm (Hoof et al., 2009) can play a useful ole in the prediction of bovine CTL epitopes (Nene et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Abstract: The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.

577 citations

Journal ArticleDOI
TL;DR: The Immuno Polymorphism Database (IPD) is a set of specialist databases related to the study of polymorphic genes in the immune system and provides access to the European Searchable Tumour cell-line database.
Abstract: The Immuno Polymorphism Database (IPD), http://www.ebi.ac.uk/ipd/ is a set of specialist databases related to the study of polymorphic genes in the immune system. The IPD project works with specialist groups or nomenclature committees who provide and curate individual sections before they are submitted to IPD for online publication. The IPD project stores all the data in a set of related databases. IPD currently consists of four databases: IPD-KIR, contains the allelic sequences of killer-cell immunoglobulin-like receptors, IPD-MHC, a database of sequences of the major histocompatibility complex of different species; IPD-HPA, alloantigens expressed only on platelets; and IPD-ESTDAB, which provides access to the European Searchable Tumour Cell-Line Database, a cell bank of immunologically characterized melanoma cell lines. The data is currently available online from the website and FTP directory. This article describes the latest updates and additional tools added to the IPD project.

464 citations

Related Papers (5)