scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Changing Character of Precipitation

01 Sep 2003-Bulletin of the American Meteorological Society (American Meteorological Society)-Vol. 84, Iss: 9, pp 1205-1217
TL;DR: In this article, precipitation intensity, duration, frequency, and phase are as much of concern as total amounts, as these factors determine the disposition of precipitation once it hits the ground and how much runs off.
Abstract: From a societal, weather, and climate perspective, precipitation intensity, duration, frequency, and phase are as much of concern as total amounts, as these factors determine the disposition of precipitation once it hits the ground and how much runs off. At the extremes of precipitation incidence are the events that give rise to floods and droughts, whose changes in occurrence and severity have an enormous impact on the environment and society. Hence, advancing understanding and the ability to model and predict the character of precipitation is vital but requires new approaches to examining data and models. Various mechanisms, storms and so forth, exist to bring about precipitation. Because the rate of precipitation, conditional on when it falls, greatly exceeds the rate of replenishment of moisture by surface evaporation, most precipitation comes from moisture already in the atmosphere at the time the storm begins, and transport of moisture by the storm-scale circulation into the storm is vital....

Content maybe subject to copyright    Report

Citations
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations


Cites background from "The Changing Character of Precipita..."

  • ...Water vapour deficit in the atmosphere increases as a result, as does the evaporation rate (Trenberth et al., 2003)....

    [...]

Journal ArticleDOI
16 Sep 2005-Science
TL;DR: A large increase was seen in the number and proportion of hurricanes reaching categories 4 and 5 and the number of cyclones and cyclone days has decreased in all basins except the North Atlantic during the past decade.
Abstract: We examined the number of tropical cyclones and cyclone days as well as tropical cyclone intensity over the past 35 years, in an environment of increasing sea surface temperature. A large increase was seen in the number and proportion of hurricanes reaching categories 4 and 5. The largest increase occurred in the North Pacific, Indian, and Southwest Pacific Oceans, and the smallest percentage increase occurred in the North Atlantic Ocean. These increases have taken place while the number of cyclones and cyclone days has decreased in all basins except the North Atlantic during the past decade.

2,989 citations

Journal ArticleDOI
TL;DR: Wiley et al. as mentioned in this paper reviewed recent literature on the last millennium, followed by an update on global aridity changes from 1950 to 2008, and presented future aridity is presented based on recent studies and their analysis of model simulations.
Abstract: This article reviews recent literature on drought of the last millennium, followed by an update on global aridity changes from 1950 to 2008. Projected future aridity is presented based on recent studies and our analysis of model simulations. Dry periods lasting for years to decades have occurred many times during the last millennium over, for example, North America, West Africa, and East Asia. These droughts were likely triggered by anomalous tropical sea surface temperatures (SSTs), with La Ni˜ na-like SST anomalies leading to drought in North America, and El-Ni˜ no-like SSTs causing drought in East China. Over Africa, the southward shift of the warmest SSTs in the Atlantic and warming in the Indian Ocean are responsible for the recent Sahel droughts. Local feedbacks may enhance and prolong drought. Global aridity has increased substantially since the 1970s due to recent drying over Africa, southern Europe, East and South Asia, and eastern Australia. Although El Ni˜ no-Southern Oscillation (ENSO), tropical Atlantic SSTs, and Asian monsoons have played a large role in the recent drying, recent warming has increased atmospheric moisture demand and likely altered atmospheric circulation patterns, both contributing to the drying. Climate models project increased aridity in the 21 st century over most of Africa, southern Europe and the Middle East, most of the Americas, Australia, and Southeast Asia. Regions like the United States have avoided prolonged droughts during the last 50 years due to natural climate variations, but might see persistent droughts in the next 20–50 years. Future efforts to predict drought will depend on models’ ability to predict tropical SSTs. 2010 JohnWiley &Sons,Ltd.WIREs Clim Change2010 DOI:10.1002/wcc.81

2,651 citations

Journal ArticleDOI
TL;DR: There is a direct influence of global warming on precipitation as mentioned in this paper, as the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere.
Abstract: There is a direct influence of global warming on precipitation. Increased heating leads to greater evaporation and thus surface drying, thereby increasing the intensity and duration of drought. However, the water holding capacity of air increases by about 7% per 1°C warming, which leads to increased water vapor in the atmosphere. Hence, storms, whether individual thunderstorms, extratropical rain or snow storms, or tropical cyclones, supplied with increased moisture, produce more intense precipitation events. Such events are observed to be widely occurring, even where total precipitation is decreasing: 'it never rains but it pours!' This increases the risk of flooding. The atmo- spheric and surface energy budget plays a critical role in the hydrological cycle, and also in the slower rate of change that occurs in total precipitation than total column water vapor. With modest changes in winds, patterns of precipitation do not change much, but result in dry areas becoming drier (generally throughout the subtropics) and wet areas becoming wetter, especially in the mid- to high latitudes: the 'rich get richer and the poor get poorer'. This pattern is simulated by climate mod- els and is projected to continue into the future. Because, with warming, more precipitation occurs as rain instead of snow and snow melts earlier, there is increased runoff and risk of flooding in early spring, but increased risk of drought in summer, especially over continental areas. However, with more precipitation per unit of upward motion in the atmosphere, i.e. 'more bang for the buck', atmo- spheric circulation weakens, causing monsoons to falter. In the tropics and subtropics, precipitation patterns are dominated by shifts as sea surface temperatures change, with El Nino a good example. The volcanic eruption of Mount Pinatubo in 1991 led to an unprecedented drop in land precipitation and runoff, and to widespread drought, as precipitation shifted from land to oceans and evaporation faltered, providing lessons for possible geoengineering. Most models simulate precipitation that occurs prematurely and too often, and with insufficient intensity, resulting in recycling that is too large and a lifetime of moisture in the atmosphere that is too short, which affects runoff and soil moisture.

2,525 citations


Cites background from "The Changing Character of Precipita..."

  • ...A consequence is that the nature of precipitation must change (Trenberth et al. 2003)....

    [...]

  • ...The conceptual basis for changes in precipitation has been outlined by Trenberth (1998, 1999a), Allen & Ingram (2002), Trenberth et al. (2003), Chou & Neelin (2004), Neelin et al. (2006), Held & Soden (2006), and Stephens & Ellis (2008)....

    [...]

  • ...…but also depend on parameterizations of sub-grid-scale convection, the shortcomings of which are revealed in diurnal cycle simulations; models produce precipitation that is too frequent and with insufficient intensity (Yang & Slingo 2001, Trenberth et al. 2003, Dai & Trenberth 2004, Dai 2006b)....

    [...]

  • ...…between increased moisture from C-C and a much smaller change in the amount of total precipitation ensures that there will be a shift in the nature of precipitation events to more intense and less frequent rains: the ‘it never rains but it pours’ syndrome (Trenberth 1998, Trenberth et al. 2003)....

    [...]

  • ...In fact, as noted by Trenberth et al. (2003), the rate of increase in precipitation intensity can even exceed the rate of increase of moisture, because the additional latent heat released invigorates the parent storm and further enhances convergence of moisture; many examples of this phenomenon…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
04 Aug 1995-Science
TL;DR: An evaluation of the atmospheric moisture budget reveals coherent large-scale changes since 1980 that are linked to recent dry conditions over southern Europe and the Mediterranean, whereas northern Europe and parts of Scandinavia have generally experienced wetter than normal conditions.
Abstract: Greenland ice-core data have revealed large decadal climate variations over the North Atlantic that can be related to a major source of low-frequency variability, the North Atlantic Oscillation. Over the past decade, the Oscillation has remained in one extreme phase during the winters, contributing significantly to the recent wintertime warmth across Europe and to cold conditions in the northwest Atlantic. An evaluation of the atmospheric moisture budget reveals coherent large-scale changes since 1980 that are linked to recent dry conditions over southern Europe and the Mediterranean, whereas northern Europe and parts of Scandinavia have generally experienced wetter than normal conditions.

7,593 citations

Journal ArticleDOI
TL;DR: In this article, the authors constructed a 2.5° latitude-longitude grid for the 17-yr period from 1979 to 1995 by merging several kinds of information sources with different characteristics, including gauge observations, estimates inferred from a variety of satellite observations, and the NCEP-NCAR reanalysis.
Abstract: Gridded fields (analyses) of global monthly precipitation have been constructed on a 2.5° latitude–longitude grid for the 17-yr period from 1979 to 1995 by merging several kinds of information sources with different characteristics, including gauge observations, estimates inferred from a variety of satellite observations, and the NCEP–NCAR reanalysis. This new dataset, which the authors have named the CPC Merged Analysis of Precipitation (CMAP), contains precipitation distributions with full global coverage and improved quality compared to the individual data sources. Examinations showed no discontinuity during the 17-yr period, despite the different data sources used for the different subperiods. Comparisons of the CMAP with the merged analysis of Huffman et al. revealed remarkable agreements over the global land areas and over tropical and subtropical oceanic areas, with differences observed over extratropical oceanic areas. The 17-yr CMAP dataset is used to investigate the annual and interannual variab...

4,216 citations

Journal ArticleDOI
07 Dec 2001-Science
TL;DR: Human activities are releasing tiny particles (aerosols) into the atmosphere that enhance scattering and absorption of solar radiation, which can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
Abstract: Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.

3,469 citations


"The Changing Character of Precipita..." refers background in this paper

  • ...Human interference, such as putting various kinds of pollutants and aerosols into the atmosphere, can make important differences in the number and size of cloud droplets, precipitation formation, within-cloud heating, and the cloud’s lifetime (e.g., Rosenfeld 2000; Ramanathan et al. 2001; Kaufman et al. 2002)....

    [...]

  • ...…such as putting various kinds of pollutants and aerosols into the atmosphere, can make important differences in the number and size of cloud droplets, precipitation formation, within-cloud heating, and the cloud’s lifetime (e.g., Rosenfeld 2000; Ramanathan et al. 2001; Kaufman et al. 2002)....

    [...]

Journal ArticleDOI
TL;DR: A decade-long change in the atmospheric circula- tion throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific.
Abstract: Considerable evidence has emerged of a sub- stantial decade-long change in the north Pacific atmo- sphere and ocean lasting from about 1976 to 1988. Ob- served significant changes in the atmospheric circula- tion throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Conse- quently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup trans- port in the north Pacific Ocean. Changes in the month- ly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activi- ty and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical envi- ronment, the deeper Aleutian low increased the nu- trient supply as seen through increases in total chloro- phyll in the water column, phytoplankton and zoo- plankton. These changes, along with the altered ocean currents and temperatures, changed the migration pat- terns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the de- cadal variations, and the temporal variability of the in- dex is explored on daily, annual, interannual and de- cadal time scales. The dominant atmosphere-ocean re- lation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pa- cific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper tro-

2,282 citations


"The Changing Character of Precipita..." refers background in this paper

  • ...In the Pacific, pronounced changes occur in storm tracks over the North Pacific in association with ENSO and the PNA (Trenberth and Hurrell 1994) leading to a dipole pattern of precipitation anomalies that extends to California at times and that has a component over the southeastern United States....

    [...]

  • ...In particular, the North Atlantic Oscillation (NAO), the Pacific–North American (PNA) teleconnection pattern, and El Niño–Southern Oscillation (ENSO) combine to influence the planetary wave structure over the Northern Hemisphere such that most wintertime temperatures in recent years have been warming over North America and Eurasia, but cooling over the northern oceans (Wallace et al. 1996; Hurrell 1996)....

    [...]