scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Changing Look Blazar B2 1420+32

TL;DR: In this paper, the authors present multi-wavelength photometric and spectroscopic monitoring observations of the blazar B2 1420+32, focusing on its outbursts in 2018-2020.
Abstract: Blazars are active galactic nuclei with their relativistic jets pointing toward the observer, with two major sub-classes, the flat spectrum radio quasars and BL Lac objects. We present multi-wavelength photometric and spectroscopic monitoring observations of the blazar, B2 1420+32, focusing on its outbursts in 2018-2020. Multi-epoch spectra show that the blazar exhibited large scale spectral variability in both its continuum and line emission, accompanied by dramatic gamma-ray and optical variability by factors of up to 40 and 15, respectively, on week to month timescales. Over the last decade, the gamma-ray and optical fluxes increased by factors of 1500 and 100, respectively. B2 1420+32 was an FSRQ with broad emission lines in 1995. Following a series of flares starting in 2018, it transitioned between BL Lac and FSRQ states multiple times, with the emergence of a strong Fe pseudo continuum. Two spectra also contain components that can be modeled as single-temperature black bodies of 12,000 and 5,200 K. Such a collection of "changing look" features has never been observed previously in a blazar. We measure gamma-ray-optical and the inter-band optical lags implying emission region separations of less than 800 and 130 gravitational radii respectively. Since most emission line flux variations, except the Fe continuum, are within a factor of 2-3, the transitions between FSRQ and BL Lac classifications are mainly caused by the continuum variability. The large Fe continuum flux increase suggests the occurrence of dust sublimation releasing more Fe ions in the central engine and an energy transfer from the relativistic jet to sub-relativistic emission components.
References
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Abstract: We present a full sky 100 micron map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 micron and 240 micron data, we have constructed a map of the dust temperature, so that the 100 micron map can be converted to a map proportional to dust column density. The result of these manipulations is a map with DIRBE-quality calibration and IRAS resolution. To generate the full sky dust maps, we must first remove zodiacal light contamination as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 micron DIRBE map against the Leiden- Dwingeloo map of H_I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 micron flux. For the 100 micron map, no significant CIB is detected. In the 140 micron and 240 micron maps, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 \pm 13 nW/m^2/sr at 140 micron, and 17 \pm 4 nW/m^2/sr at 240 micron (95% confidence). This integrated flux is ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles estimates in regions of low and moderate reddening. These dust maps will also be useful for estimating millimeter emission that contaminates CMBR experiments and for estimating soft X-ray absorption.

14,295 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the radio-loud active galactic nuclei (AGN) classification and general properties of AGN, including radio galaxies, quasars, and blazars.
Abstract: The appearance of active galactic nuclei (AGN) depends so strongly on orientation that our current classification schemes are dominated by random pointing directions instead of more interesting physical properties. Light from the centers of many AGN is obscrued by optically thick circumstellar matter, particularly at optical and ultraviolet wavelengths. In radio-loud AGN, bipolar jets emanating from the nucleus emit radio through gamma-ray light that is relativistically beamed along the jet axes. Understanding the origin and magnitude of radiation anistropies in AGN allows us to unify different classes of AGN; that is, to identify each single, underlying AGN type that gives rise to different classes through different orientations. This review describes the unification of radio-loud AGN, which includes radio galaxies, quasars, and blazars. We describe the classification and general properties of AGN. We summarize the evidence for anisotropic emission caused by circumstellar obscuration and relativistic beaming. We outline the two most plausible unified schemes for radio-loud AGN, one linking the high-luminosity sources (BL Lac objects and less luminous radio galaxies). Using the formalism appropriate to samples biased by relativistic beaming, we show the population statistics for two schemes are in accordance with available data. We analyze the possible connections between low- and high-luminosity radio-loud AGN and conclude they probably are powered by similar physical processes, at least within the relativistic jet. We review potential difficulties with unification and conclude that none currently constitutes a serious problem. We discuss likely complications to unified schemes that are suggested by realistic physical considerations; these will be important to consider when more comprehensive data for larger complete samples become available. We conclude with a list of the ten questions we believe are the most pressing in this field.

4,290 citations

Journal ArticleDOI
TL;DR: The straw person model (SPM) as mentioned in this paper has been proposed to explain the orientation effects of active galactic nuclei (AGN) and quasars in the line of sight (LOS) images.
Abstract: Because the critical central regions of Active Galactic Nuclei (AGN) and quasars are strongly nonspherical but spatially unresolved, orientation effects have been the source of much confusion. In fact, it now appears that much of the variety in AGN types is just the result of varying orientation relative to the line of sight. We can define an extreme hypothesis,, the straw person model (SPM), in which there are two basic types of AGN: the radio quiets and the radio louds. For each type there is a range in intrinsic luminosity, and the luminosity controls some properties such as the Fanaroff and Riley classes. However, at a given intrinsic luminosity, all other properties such as spectroscopic classification and VLBI component speeds are ascribed to orientation. This model is only a caricature of the unification idea, and is already ruled out on many grounds, but it will be useful for organizing the discussion. I’ll describe what I consider to be convincing evidence that orientation effects are important and widespread. The true situation may be in some sense half way between the SPM and the hypothesis that orientation doesn’t affect classification at aIl. To us optimists, the orienration cup is half full rather than half empty. Although it is too soon to say for sure, the hypothesis that most objects’ classifications would be different if seen from other directions is a tenable one today.

4,005 citations

Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Related Papers (5)