The Cipher SHARK
21 Feb 1996-pp 99-111
TL;DR: Shark as discussed by the authors combines highly nonlinear substitution boxes and maximum distance separable error correcting codes (MDS-codes) to guarantee a good diffusion and is resistant against differential and linear cryptanalysis after a small number of rounds.
Abstract: We present the new block cipher SHARK. This cipher combines highly non-linear substitution boxes and maximum distance separable error correcting codes (MDS-codes) to guarantee a good diffusion. The cipher is resistant against differential and linear cryptanalysis after a small number of rounds. The structure of SHARK is such that a fast software implementation is possible, both for the encryption and the decryption. Our C-implementation of SHARK runs more than four times faster than SAFER and IDEA on a 64-bit architecture.
Citations
More filters
Book•
01 Jan 1996TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher:
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.
13,597Â citations
Book•
14 Feb 2002
TL;DR: The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked.
Abstract: 1. The Advanced Encryption Standard Process.- 2. Preliminaries.- 3. Specification of Rijndael.- 4. Implementation Aspects.- 5. Design Philosophy.- 6. The Data Encryption Standard.- 7. Correlation Matrices.- 8. Difference Propagation.- 9. The Wide Trail Strategy.- 10. Cryptanalysis.- 11. Related Block Ciphers.- Appendices.- A. Propagation Analysis in Galois Fields.- A.1.1 Difference Propagation.- A.l.2 Correlation.- A. 1.4 Functions that are Linear over GF(2).- A.2.1 Difference Propagation.- A.2.2 Correlation.- A.2.4 Functions that are Linear over GF(2).- A.3.3 Dual Bases.- A.4.2 Relationship Between Trace Patterns and Selection Patterns.- A.4.4 Illustration.- A.5 Rijndael-GF.- B. Trail Clustering.- B.1 Transformations with Maximum Branch Number.- B.2 Bounds for Two Rounds.- B.2.1 Difference Propagation.- B.2.2 Correlation.- B.3 Bounds for Four Rounds.- B.4 Two Case Studies.- B.4.1 Differential Trails.- B.4.2 Linear Trails.- C. Substitution Tables.- C.1 SRD.- C.2 Other Tables.- C.2.1 xtime.- C.2.2 Round Constants.- D. Test Vectors.- D.1 KeyExpansion.- D.2 Rijndael(128,128).- D.3 Other Block Lengths and Key Lengths.- E. Reference Code.
3,444Â citations
10 Sep 2007
TL;DR: An ultra-lightweight block cipher, present, which is competitive with today's leading compact stream ciphers and suitable for extremely constrained environments such as RFID tags and sensor networks.
Abstract: With the establishment of the AES the need for new block ciphers has been greatly diminished; for almost all block cipher applications the AES is an excellent and preferred choice. However, despite recent implementation advances, the AES is not suitable for extremely constrained environments such as RFID tags and sensor networks. In this paper we describe an ultra-lightweight block cipher, present . Both security and hardware efficiency have been equally important during the design of the cipher and at 1570 GE, the hardware requirements for present are competitive with today's leading compact stream ciphers.
2,202Â citations
20 Jan 1997
TL;DR: A new 128-bit block cipher called Square, which concentrates on the resistance against differential and linear cryptanalysis, and the publication of the resulting cipher for public scrutiny is published.
Abstract: In this paper we present a new 128-bit block cipher called Square. The original design of Square concentrates on the resistance against differential and linear cryptanalysis. However, after the initial design a dedicated attack was mounted that forced us to augment the number of rounds. The goal of this paper is the publication of the resulting cipher for public scrutiny. A C implementation of Square is available that runs at 2.63 MByte/s on a 100 MHz Pentium. Our M68HC05 Smart Card implementation fits in 547 bytes and takes less than 2 msec. (4 MHz Clock). The high degree of parallellism allows hardware implementations in the Gbit/s range today.
759Â citations
Proceedings Article•
04 Feb 2002
TL;DR: This paper considers a cryptanalytic approach called integral cryptanalysis, which can be seen as a dual to differential cryptanalysis and applies to ciphers not vulnerable to differential attacks.
Abstract: This paper considers a cryptanalytic approach called integral cryptanalysis. It can be seen as a dual to differential cryptanalysis and applies to ciphers not vulnerable to differential attacks. The method is particularlyapplicable to block ciphers which use bijective components only.
419Â citations
References
More filters
Book•
01 Jan 1977
TL;DR: This book presents an introduction to BCH Codes and Finite Fields, and methods for Combining Codes, and discusses self-dual Codes and Invariant Theory, as well as nonlinear Codes, Hadamard Matrices, Designs and the Golay Code.
Abstract: Linear Codes. Nonlinear Codes, Hadamard Matrices, Designs and the Golay Code. An Introduction to BCH Codes and Finite Fields. Finite Fields. Dual Codes and Their Weight Distribution. Codes, Designs and Perfect Codes. Cyclic Codes. Cyclic Codes: Idempotents and Mattson-Solomon Polynomials. BCH Codes. Reed-Solomon and Justesen Codes. MDS Codes. Alternant, Goppa and Other Generalized BCH Codes. Reed-Muller Codes. First-Order Reed-Muller Codes. Second-Order Reed-Muller, Kerdock and Preparata Codes. Quadratic-Residue Codes. Bounds on the Size of a Code. Methods for Combining Codes. Self-dual Codes and Invariant Theory. The Golay Codes. Association Schemes. Appendix A. Tables of the Best Codes Known. Appendix B. Finite Geometries. Bibliography. Index.
10,083Â citations
02 Jan 1994
TL;DR: A new method is introduced for cryptanalysis of DES cipher, which is essentially a known-plaintext attack, that is applicable to an only-ciphertext attack in certain situations.
Abstract: We introduce a new method for cryptanalysis of DES cipher, which is essentially a known-plaintext attack. As a result, it is possible to break 8-round DES cipher with 221 known-plaintexts and 16-round DES cipher with 247 known-plaintexts, respectively. Moreover, this method is applicable to an only-ciphertext attack in certain situations. For example, if plaintexts consist of natural English sentences represented by ASCII codes, 8-round DES cipher is breakable with 229 ciphertexts only.
2,753Â citations
2,541Â citations
11 Aug 1990
TL;DR: A new type of cryptanalytic attack is developed which can break the reduced variant of DES with eight rounds in a few minutes on a personal computer and can break any reduced variantof DES (with up to 15 rounds) using less than 256 operations and chosen plaintexts.
Abstract: The Data Encryption Standard (DES) is the best known and most widely used cryptosystem for civilian applications. It was developed at IBM and adopted by the National Bureau of Standards in the mid 1970s, and has successfully withstood all the attacks published so far in the open literature. In this paper we develop a new type of cryptanalytic attack which can break the reduced variant of DES with eight rounds in a few minutes on a personal computer and can break any reduced variant of DES (with up to 15 rounds) using less than 256 operations and chosen plaintexts. The new attack can be applied to a variety of DES-like substitution/permutation cryptosystems, and demonstrates the crucial role of the (unpublished) design rules.
2,494Â citations
09 Dec 1993
TL;DR: Blowfish, a new secret-key block cipher, is proposed, a Feistel network, iterating a simple encryption function 16 times, which is very efficient on large microprocessors.
Abstract: Blowfish, a new secret-key block cipher, is proposed. It is a Feistel network, iterating a simple encryption function 16 times. The block size is 64 bits, and the key can be any length up to 448 bits. Although there is a complex initialization phase required before any encryption can take place, the actual encryption of data is very efficient on large microprocessors.
893Â citations