scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The coming of age of chaperone-mediated autophagy.

01 Jun 2018-Nature Reviews Molecular Cell Biology (Nature Publishing Group)-Vol. 19, Iss: 6, pp 365-381
TL;DR: These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.
Abstract: Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective — a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: Lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species.
Abstract: Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. They have a unique architecture consisting of a hydrophobic core of neutral lipids, which is enclosed by a phospholipid monolayer that is decorated by a specific set of proteins. Originating from the endoplasmic reticulum, lipid droplets can associate with most other cellular organelles through membrane contact sites. It is becoming apparent that these contacts between lipid droplets and other organelles are highly dynamic and coupled to the cycles of lipid droplet expansion and shrinkage. Importantly, lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species. Thus, lipid droplets facilitate the coordination and communication between different organelles and act as vital hubs of cellular metabolism.

1,143 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.
Abstract: Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan. Misfolded proteins have a high propensity to form potentially toxic aggregates. Cells employ a complex network of processes, involving chaperones and proteolytic machineries that ensure proper protein folding and remodel or degrade misfolded species and aggregates. This proteostasis network declines with age, which can be linked to human degenerative diseases.

705 citations

Journal ArticleDOI
13 Jun 2019-Cell
TL;DR: Emerging data on the non-autophagic functions of autophagy-relevant proteins is discussed and it is suggested that most, if not all, components of the molecular machinery for Autophagy also mediate autophagic-independent functions.

512 citations


Cites background from "The coming of age of chaperone-medi..."

  • ...…of the lysosomal membrane, and (2) chaperone-medicated autophagy (CMA), which reliesona specific splicing isoformof lysosomal-associatedmembrane protein 2 (LAMP2) as a translocase for KFERQ-containing cytosolic proteins into the lysosomal lumen (Kaushik and Cuervo, 2018; Li et al., 2012a)....

    [...]

Journal ArticleDOI
TL;DR: Autophagy in Human Diseases Autophagy is a complex process of intracellular degradation of senescent or malfunctioning organelles that is associated with certain cancers, neurodeletes, and other diseases.
Abstract: Autophagy in Human Diseases Autophagy is a complex process of intracellular degradation of senescent or malfunctioning organelles. Dysregulated autophagy is associated with certain cancers, neurode...

511 citations


Cites background from "The coming of age of chaperone-medi..."

  • ...translocons deliver unfolded proteins into the lumen of lysosomes.(9) Cyto-...

    [...]

References
More filters
Journal ArticleDOI
30 Apr 2009-Nature
TL;DR: A previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy) is identified that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.
Abstract: The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.

3,091 citations

Journal ArticleDOI

2,792 citations

Journal ArticleDOI
TL;DR: The results suggest that the regulation of autophagy is organ dependent and the role of Aut7/Apg8 is not restricted to the starvation response, and this transgenic mouse model is a useful tool to study mammalian autophagic regulation.
Abstract: Macroautophagy mediates the bulk degradation of cytoplasmic components. It accounts for the degradation of most long-lived proteins: cytoplasmic constituents, including organelles, are sequestered into autophagosomes, which subsequently fuse with lysosomes, where degradation occurs. Although the possible involvement of autophagy in homeostasis, development, cell death, and pathogenesis has been repeatedly pointed out, systematic in vivo analysis has not been performed in mammals, mainly because of a limitation of monitoring methods. To understand where and when autophagy occurs in vivo, we have generated transgenic mice systemically expressing GFP fused to LC3, which is a mammalian homologue of yeast Atg8 (Aut7/Apg8) and serves as a marker protein for autophagosomes. Fluorescence microscopic analyses revealed that autophagy is differently induced by nutrient starvation in most tissues. In some tissues, autophagy even occurs actively without starvation treatments. Our results suggest that the regulation of autophagy is organ dependent and the role of autophagy is not restricted to the starvation response. This transgenic mouse model is a useful tool to study mammalian autophagy.

2,238 citations

Journal ArticleDOI
24 Jul 2009-Science
TL;DR: It is found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB), providing a potential therapeutic target to enhance cellular clearing in lysOSomal storage disorders and neurodegenerative diseases.
Abstract: Lysosomes are organelles central to degradation and recycling processes in animal cells. Whether lysosomal activity is coordinated to respond to cellular needs remains unclear. We found that most lysosomal genes exhibit coordinated transcriptional behavior and are regulated by the transcription factor EB (TFEB). Under aberrant lysosomal storage conditions, TFEB translocated from the cytoplasm to the nucleus, resulting in the activation of its target genes. TFEB overexpression in cultured cells induced lysosomal biogenesis and increased the degradation of complex molecules, such as glycosaminoglycans and the pathogenic protein that causes Huntington's disease. Thus, a genetic program controls lysosomal biogenesis and function, providing a potential therapeutic target to enhance cellular clearing in lysosomal storage disorders and neurodegenerative diseases.

1,928 citations

Journal ArticleDOI
27 Aug 2004-Science
TL;DR: It is found that wild-type α-synuclein was selectively translocated into lysosomes for degradation by the chaperone-mediated autophagy pathway, which may underlie the toxic gain-of-function by the A53T and A30P mutants.
Abstract: Aberrant α-synuclein degradation is implicated in Parkinson's disease pathogenesis because the protein accumulates in the Lewy inclusion bodies associated with the disease. Little is known, however, about the pathways by which wild-type α-synuclein is normally degraded. We found that wild-type α-synuclein was selectively translocated into lysosomes for degradation by the chaperone-mediated autophagy pathway. The pathogenic A53T and A30P α-synuclein mutants bound to the receptor for this pathway on the lysosomal membrane, but appeared to act as uptake blockers, inhibiting both their own degradation and that of other substrates. These findings may underlie the toxic gain-of-function by the mutants.

1,752 citations