scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The contribution of de novo coding mutations to autism spectrum disorder

TL;DR: It is estimated that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation.
Abstract: Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.
Abstract: Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.

3,096 citations

Journal ArticleDOI
TL;DR: The remarkable range of discoveriesGWASs has facilitated in population and complex-trait genetics, the biology of diseases, and translation toward new therapeutics are reviewed.
Abstract: Application of the experimental design of genome-wide association studies (GWASs) is now 10 years old (young), and here we review the remarkable range of discoveries it has facilitated in population and complex-trait genetics, the biology of diseases, and translation toward new therapeutics. We predict the likely discoveries in the next 10 years, when GWASs will be based on millions of samples with array data imputed to a large fully sequenced reference panel and on hundreds of thousands of samples with whole-genome sequencing data.

2,669 citations

Journal ArticleDOI
11 Feb 2016-Nature
TL;DR: It is found that many structurally diverse alleles of the complement component 4 (C4) genes generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C 4A.
Abstract: Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

1,826 citations

Journal ArticleDOI
Bupgen1
TL;DR: A genome-wide association meta-analysis of 18,381 austim spectrum disorder cases and 27,969 controls identifies five risk loci and the authors find quantitative and qualitative polygenic heterogeneity across ASD subtypes.
Abstract: Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.

1,342 citations

Journal ArticleDOI
23 Sep 2015-Neuron
TL;DR: Analysis of de novo CNVs from the full Simons Simplex Collection replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci, including 6 CNV regions.

1,176 citations


Cites background or methods from "The contribution of de novo coding ..."

  • ...Applying this model to the entire SSC cohort identified eight ASD genes (Table S6) in addition to the 27 identified previously at an FDR of % 0.1 (Iossifov et al., 2014)....

    [...]

  • ..., 2014) alongside exome data from 3,982 probands in the SSC (Iossifov et al., 2014) and ASC (De Rubeis et al....

    [...]

  • ...1220 Neuron 87, 1215–1233, September 23, 2015 ª2015 Elsevier Inc. LoF (dnLoF) mutation (Iossifov et al., 2014; Robinson et al., 2014; Samocha et al., 2014)....

    [...]

  • ...Recent collaborative efforts have applied exome sequencing technology to the entire SSC cohort (Iossifov et al., 2014) identifying 27 ASD associated genes (FDR of % 0.1)....

    [...]

  • ...…PA 15213, USA *Correspondence: stephan.sanders@ucsf.edu (S.J.S.), matthew.state@ucsf.edu (M.W.S.) http://dx.doi.org/10.1016/j.neuron.2015.09.016 2014; Iossifov et al., 2012, 2014; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012), as well as yielding important insights into the…...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

45,957 citations

Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
20 Apr 2007-Science
TL;DR: Findings establish de novo germline mutation as a more significant risk factor for ASD than previously recognized.
Abstract: We tested the hypothesis that de novo copy number variation (CNV) is associated with autism spectrum disorders (ASDs). We performed comparative genomic hybridization (CGH) on the genomic DNA of patients and unaffected subjects to detect copy number variants not present in their respective parents. Candidate genomic regions were validated by higher-resolution CGH, paternity testing, cytogenetics, fluorescence in situ hybridization, and microsatellite genotyping. Confirmed de novo CNVs were significantly associated with autism (P = 0.0005). Such CNVs were identified in 12 out of 118 (10%) of patients with sporadic autism, in 2 out of 77 (3%) of patients with an affected first-degree relative, and in 2 out of 196 (1%) of controls. Most de novo CNVs were smaller than microscopic resolution. Affected genomic regions were highly heterogeneous and included mutations of single genes. These findings establish de novo germline mutation as a more significant risk factor for ASD than previously recognized.

2,770 citations

Journal ArticleDOI
10 May 2012-Nature
TL;DR: It is shown that de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD.
Abstract: It is well established that autism spectrum disorders (ASD) have a strong genetic component; however, for at least 70% of cases, the underlying genetic cause is unknown. Under the hypothesis that de novo mutations underlie a substantial fraction of the risk for developing ASD in families with no previous history of ASD or related phenotypes--so-called sporadic or simplex families--we sequenced all coding regions of the genome (the exome) for parent-child trios exhibiting sporadic ASD, including 189 new trios and 20 that were previously reported. Additionally, we also sequenced the exomes of 50 unaffected siblings corresponding to these new (n = 31) and previously reported trios (n = 19), for a total of 677 individual exomes from 209 families. Here we show that de novo point mutations are overwhelmingly paternal in origin (4:1 bias) and positively correlated with paternal age, consistent with the modest increased risk for children of older fathers to develop ASD. Moreover, 39% (49 of 126) of the most severe or disruptive de novo mutations map to a highly interconnected β-catenin/chromatin remodelling protein network ranked significantly for autism candidate genes. In proband exomes, recurrent protein-altering mutations were observed in two genes: CHD8 and NTNG1. Mutation screening of six candidate genes in 1,703 ASD probands identified additional de novo, protein-altering mutations in GRIN2B, LAMC3 and SCN1A. Combined with copy number variant (CNV) data, these results indicate extreme locus heterogeneity but also provide a target for future discovery, diagnostics and therapeutics.

2,062 citations

Related Papers (5)
13 Nov 2014-Nature
Silvia De Rubeis, Xin-Xin He, Arthur P. Goldberg, Christopher S. Poultney, Kaitlin E. Samocha, A. Ercument Cicek, Yan Kou, Li Liu, Menachem Fromer, Menachem Fromer, R. Susan Walker, Tarjinder Singh, Lambertus Klei, Jack A. Kosmicki, Shih-Chen Fu, Branko Aleksic, Monica Biscaldi, Patrick Bolton, Jessica M. Brownfeld, Jinlu Cai, Nicholas G. Campbell, Angel Carracedo, Angel Carracedo, Maria H. Chahrour, Andreas G. Chiocchetti, Hilary Coon, Emily L. Crawford, Lucy Crooks, Sarah Curran, Geraldine Dawson, Eftichia Duketis, Bridget A. Fernandez, Louise Gallagher, Evan T. Geller, Stephen J. Guter, R. Sean Hill, R. Sean Hill, Iuliana Ionita-Laza, Patricia Jiménez González, Helena Kilpinen, Sabine M. Klauck, Alexander Kolevzon, Irene Lee, Jing Lei, Terho Lehtimäki, Chiao-Feng Lin, Avi Ma'ayan, Christian R. Marshall, Alison L. McInnes, Benjamin M. Neale, Michael John Owen, Norio Ozaki, Mara Parellada, Jeremy R. Parr, Shaun Purcell, Kaija Puura, Deepthi Rajagopalan, Karola Rehnström, Abraham Reichenberg, Aniko Sabo, Michael Sachse, Stephen Sanders, Chad M. Schafer, Martin Schulte-Rüther, David Skuse, David Skuse, Christine Stevens, Peter Szatmari, Kristiina Tammimies, Otto Valladares, Annette Voran, Li-San Wang, Lauren A. Weiss, A. Jeremy Willsey, Timothy W. Yu, Timothy W. Yu, Ryan K. C. Yuen, Edwin H. Cook, Christine M. Freitag, Michael Gill, Christina M. Hultman, Thomas Lehner, Aarno Palotie, Aarno Palotie, Aarno Palotie, Gerard D. Schellenberg, Pamela Sklar, Matthew W. State, James S. Sutcliffe, Christopher A. Walsh, Christopher A. Walsh, Stephen W. Scherer, Michael E. Zwick, Jeffrey C. Barrett, David J. Cutler, Kathryn Roeder, Bernie Devlin, Mark J. Daly, Mark J. Daly, Joseph D. Buxbaum