scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat

15 Jan 1977-The Journal of Comparative Neurology (J Comp Neurol)-Vol. 171, Iss: 2, pp 157-191
TL;DR: The mediodorsal nucleus of the rat thalamus has been divided into medial, central and lateral segments, and these segments have been shown by experiments using the autoradiographic method of demonstrating axonal connections to project to seven distinct cortical areas covering most of the frontal pole of the hemisphere.
Abstract: The mediodorsal nucleus of the rat thalamus has been divided into medial, central and lateral segments on the basis of its structure and axonal connections, and these segments have been shown by experiments using the autoradiographic method of demonstrating axonal connections to project to seven distinct cortical areas covering most of the frontal pole of the hemisphere. The position and cytoarchitectonic characteristics of these areas are described. The medial segment of the nucleus projects to the prelimbic area (32) on the medial surface of the hemisphere, and to the dorsal agranular insular area, dorsal to the rhinal sulcus on the lateral surface. The lateral segment projects to the anterior cingulate area (area 24) and the medial precentral area on the dorsomedial shoulder of the hemisphere, while the central segment projects to the ventral agranular insular area in the dorsal bank of the rhinal sulcus, and to a lateral part of the orbital cortex further rostrally. (The term "orbital" is used to refer to the cortex on the ventral surface of the frontal pole of the hemisphere.) A ventral part of this orbital cortex also receives fibers from the mediodorsal nucleus, possibly its lateral segment, but the medial part of the orbital cortex, and the ventrolateral orbital area in the fundus of the rhinal sulcus receive projections from the paratenial nucleus and the submedial nucleus, respectively. All of these thalamocortical projections end in layer III, and in the outer part of layer I. The basal nucleus of the ventromedial complex (the thalamic taste relay) has been shown to have a similar laminar projection (layer I and layers III/IV) to the granular insular area immediately dorsal to, but not overlapping, the mediodorsal projection field. However, the principal nucleus of the ventromedial complex appears to project to layer I, and possibly layer VI, of the entire frontal pole of the hemisphere. The anteromedial nucleus does not appear to project to layer III of the projection field of the mediodorsal nucleus, although it may project to layers I and VI, especially in the anterior cingulate and medial precentral areas. A thalamoamygdaloid projection from the medial segment of the mediodorsal nucleus to the basolateral nucleus of the amygdala has also been demonstrated, which reciprocates an amygdalothalamic projection from the basolateral nucleus to the medial segment. The habenular nuclei also appear to project to the central nucleus of the amygdala. These results are discussed in relation to the delineation and subdivision of the prefrontal cortex in the rat, and to amygdalothalamic and amygdalocortical projections which are described in a subsequent paper (Krettek and Price, '77).
Citations
More filters
Journal ArticleDOI
10 Apr 2014-Nature
TL;DR: A brain-wide, cellular-level, mesoscale connectome for the mouse, using enhanced green fluorescent protein-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain.
Abstract: Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.

2,051 citations

Journal ArticleDOI
TL;DR: The purpose of the present investigation was to examine the topographical organization of efferent projections from the cytoarchitectonic divisions of the mPFC (the medial precentral, dorsal anterior cingulate and prelimbic cortices) to determine whether the efferents from different regions within the prelimbics were organized topographically.
Abstract: The purpose of the present investigation was to examine the topographical organization of efferent projections from the cytoarchitectonic divisions of the mPFC (the medial precentral, dorsal anterior cingulate and prelimbic cortices). We also sought to determine whether the efferents from different regions within the prelimbic division were organized topographically. Anterograde transport of Phaseolus vulgaris leucoagglutinin was used to examine the efferent projections from restricted injection sites within the mPFC. Major targets of the prelimbic area were found to include prefrontal, cingulate, and perirhinal cortical structures, the dorsomedial and ventral striatum, basal forebrain nuclei, basolateral amygdala, lateral hypothalamus, mediodorsal, midline and intralaminar thalamic nuclei, periaqueductal gray region, ventral midbrain tegmentum, laterodorsal tegmental nucleus, and raphe nuclei. Previously unreported projections of the prelimbic region were also observed, including efferents to the anterior olfactory nucleus, the piriform cortex, and the pedunculopontine tegmental-cuneiform region. A topographical organization governed the efferent projections from the prelimbic area, such that the position of terminal fields within target structures was determined by the rostrocaudal, dorsoventral, and mediolateral placement of the injection sites. Efferent projections from the medial precentral and dorsal anterior cingulate divisions (dorsomedial PFC) were organized in a similar topographical fashion and produced a pattern of anterograde labeling different from that seen with prelimbic injection sites. Target structures innervated primarily by the dorsomedial PFC included certain neocortical fields (the motor, somatosensory, and visual cortices), the dorsolateral striatum, superior colliculus, deep mesencephalic nucleus, and the pontine and medullary reticular formation. Previously unreported projections to the paraoculomotor central gray area and the mesencephalic trigeminal nucleus were observed following dorsomedial PFC injections. These results indicate that the efferent projections of the mPFC are topographically organized within and across the cytoarchitectonic divisions of the medial wall cortex. The significance of topographically organized and restricted projections of the rat mPFC is discussed in light of behavioral and physiological studies indicating functional heterogeneity of this region.

1,621 citations

Journal ArticleDOI
TL;DR: A system has been described that links the medial prefrontal cortex and a few related cortical areas to the amygdala, the ventral striatum and pallidum, the medial thalamus, the hypothalamus, and the periaqueductal gray and other parts of the brainstem, which indicates that this system is centrally involved in mood disorders.

1,386 citations

Journal ArticleDOI
TL;DR: The efferent fiber connections of the nuclei of the amygdaloid complex with subcortical structures in the basal telencephalon, hypothalamus, midbrain, and pons have been studied in the rat and cat, using the autoradiographic method for tracing axonal connections.
Abstract: The efferent fiber connections of the nuclei of the amygdaloid complex with subcortical structures in the basal telencephalon, hypothalamus, midbrain, and pons have been studied in the rat and cat, using the autoradiographic method for tracing axonal connections. The cortical and thalamic projections of these nuclei have been described in previous papers (Krettek and Price, ′77b,c). Although the subcortical connections of the amygdaloid nuclei are widespread within the basal forebrain and brain stem, the projections of each nucleus have been found to be well defined, and distinct from those of the other amygdaloid nuclei. The basolateral amygdaloid nucleus projects heavily to the lateral division of the bed nucleus of the stria terminalis (BNST), to the caudal part of the substantia innominata, and to the ventral part of the corpus striatum (nucleus accumbens and ventral putamen) and the olfactory tubercle; it projects more lightly to the lateral hypothalamus. The central nucleus also projects to the lateral division of the BNST and the lateral hypothalamus, but in addition it sends fibers to the lateral part of the substantia nigra and the marginal nucleus of the brachium conjunctivum. The basomedial nucleus has projections to the ventral striatum and olfactory tubercle which are similar to those of the basolateral nucleus, but it also projects to the core of the ventromedial hypothalamic nucleus and the premammillary nucleus, and to a central zone of the BNST which overlaps the medial and lateral divisions. The medial nucleus also projects to the core of the ventromedial nucleus and the premammillary nucleus, but sends fibers to the medial division of the BNST and does not project to the ventral striatum. The posterior cortical nucleus projects to the premammillary nucleus and to the medial division of the BNST, but a projection from this nucleus to the ventromedial nucleus has not been demonstrated. Projections to the “shell” of the ventromedial nucleus have been found only from the ventral part of the subiculum and from a structure at the junction of the amygdala and the hippocampal formation, which has been termed the amygdalo-hippocampal area (AHA). The AHA also sends fibers to the medial part of the BNST and the premammillary nucleus. Virtually no subcortical projections outside the amygdala itself have been demonstrated from the lateral nucleus, or from the olfactory cortical areas around the amygdala (the anterior cortical nucleus, the periamygdaloid cortex, and the posterior prepiriform cortex). However, portions of the endopiriform nucleus deep to the prepiriform cortex project to the ventral putamen, and to the lateral hypothalamus.

1,279 citations

Journal ArticleDOI
TL;DR: There is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.

1,201 citations

References
More filters
Journal ArticleDOI
TL;DR: The extent and organization of motor (MsI) and somatosensory (SmI) cortex in the rat were investigated using intracortical stimulation with semi-microelectrodes and single- or multiple-unit recording techniques to find overlap was essentially complete for the hindlimb, but only partial for the forelimb.

917 citations

Journal ArticleDOI
TL;DR: The rat's MD-projection cortex differs from that in the monkey in that it lacks a granular layer and appears to have no prominent direct associations with temporal and juxtahippocampal areas, suggesting that the striatum or thalamus receives a proportionally larger share of the MD projection in this animal than it does in themonkey.

830 citations

Journal ArticleDOI
TL;DR: Frozen sections of formalin-fixed brains containing surgical lesions, were treated with 15% ethanol for 0.5 hr, and subsequently treated with 0.05% potassium permanganate for 4–10 min, and covered in neutral synthetic resin.
Abstract: Frozen sections of formalin-fixed brains containing surgical lesions, were treated with 15% ethanol for 0.5 hr., soaked in 0.5% phosphomolybdic acid for 0.25–1.0 hr., and subsequently treated with 0.05% potassium permanganate for 4–10 min. (The duration of the latter treatment is critical and individually variable). Subsequent procedure is as follows: decolorize in a mixture of equal parts of 1% hydroquinone and 1% oxalic acid; wash thoroughly and soak sections in 1.5% silver nitrate for 20–30 min.; ammoniacal silver nitrate (silver nitrate 0.9 g., distilled water 20 ml., pure ethanol 10 ml., strong ammonia 1.8 ml., 2.5% sodium hydroxide 1.5 ml.) 0.5–1.0 min.; reduce in acidified formalin (distilled water 400 ml., pure ethanol 45 ml., 1% citric acid 13.5 ml., 10% formalin 13.5 ml.) 1 min.; wash, and pass section through 1% sodium thiosulfate (0.5–1.0 min.); wash thoroughly and pass sections through graded alcohols and xylene (3 changes); cover in neutral synthetic resin.

810 citations