scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Current Process for the Recycling of Spent Lithium Ion Batteries.

Li-Feng Zhou1, Dongrun Yang1, Tao Du1, He Gong1, Wen-Bin Luo1 
03 Dec 2020-Frontiers in Chemistry (Frontiers)-Vol. 8, pp 578044
TL;DR: This paper reviews the latest development of the recovery technology of waste lithium ion batteries, including the development of recovery process and products, and the challenges and future economic and application prospects.
Abstract: With the development of electric vehicles involving lithium ion batteries as energy storage devices, the demand for lithium ion batteries in the whole industry is increasing, which is bound to lead to a large number of lithium ion batteries in the problem of waste, recycling and reuse. If not handled properly, it will certainly have a negative impact on the environment and resources. Current commercial lithium ion batteries mainly contain transition metal oxides or phosphates, aluminum, copper, graphite, organic electrolytes containing harmful lithium salts, and other chemicals. Therefore, the recycling and reuse of spent lithium ion batteries has been paid more and more attention by many researchers. However, due to the high energy density, high safety and low price of lithium ion batteries have great differences and diversity, the recycling of waste lithium ion batteries has great difficulties. This paper reviews the latest development of the recovery technology of waste lithium ion batteries, including the development of recovery process and products. In addition, the challenges and future economic and application prospects are described.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors introduce the concept of lithium-ion batteries (LIBs) and review state-of-the-art technologies for metal recycling processes, emphasizing on LIB pretreatment approaches, metal extraction, and pyrometallurgical, hydrometalurgical, and biometallurgical approaches.

50 citations

Journal ArticleDOI
Chenxing Yi1, Lijie Zhou, Xiqing Wu1, Wei Sun1, Longsheng Yi1, Yue Yang1 
TL;DR: In this article, the latest research progress for recycling of graphite from spent lithium-ion batteries was summarized, and the processes of pretreatment, graphite enrichment and purification, and materials regeneration for graphite recovery were introduced.

25 citations

Journal ArticleDOI
TL;DR: In this paper , the authors present several future research directions that would be useful for academics and policymakers taking necessary steps such as product design, integrated recycling techniques, intra-industry stakeholder cooperation, business model development, and techno-economic analysis, and others towards achieving a circular economy in the LIB value chain.
Abstract: Lithium-ion batteries have become a crucial part of the energy supply chain for transportation (in electric vehicles) and renewable energy storage systems. Recycling is considered one of the most effective ways for recovering the materials for spent LIB streams and circulating the material in the critical supply chain. However, few review articles have been published in the research domain of recycling and the circular economy, with most mainly focusing on either recycling methods or the challenges and opportunities in the circular economy for spent LIBs. This paper reviewed 93 articles (66 original research articles and 27 review articles) identified in the Web of Science core collection database. The study showed that publications in the area are increasing exponentially, with many focusing on recycling and recovery-related issues; policy and regulatory affairs received less attention than recycling. Most of the studies were experiments followed by evaluation and planning (as per the categorization made). Pre-treatment processes were widely discussed, which is a critical part of hydrometallurgy and direct physical recycling (DPR). DPR is a promising recycling technique that requires further attention. Some of the issues that require further consideration include a techno-economic assessment of the recycling process, safe reverse logistics, a global EV assessment revealing material recovery potential, and a lifecycle assessment of experiments processes (both in the hydrometallurgical and pyrometallurgical processes). Furthermore, the application of the circular business model and associated stakeholders’ engagement, clear and definitive policy guidelines, extended producer responsibility implications, and material tracking, and identification deserve further focus. This study presents several future research directions that would be useful for academics and policymakers taking necessary steps such as product design, integrated recycling techniques, intra-industry stakeholder cooperation, business model development, techno-economic analysis, and others towards achieving a circular economy in the LIB value chain.

22 citations

Journal ArticleDOI
TL;DR: In this article , the ESCAPE tool is used to evaluate the sustainability of three different technologies for lithium-ion battery recycling, including pyrometallurgy, thermal pre-treatment, and chemical and ultrapure water consumption.

21 citations

References
More filters
Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Abstract: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

7,404 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations


"The Current Process for the Recycli..." refers background in this paper

  • ...(1998) reported a recovery rate of over 99% for Co and Li, and Nan et al. (2005) reported a recovery rate of over 98% for Cu....

    [...]

  • ...However, as battery manufacturers consider the value and environmental issues of Co, Co-free electrode materials in LIBs have been continuously developed in recent years, significantly including LiMn2O4 and LiFePO4, some of which have been commercialized (Etacheri et al., 2011; Huang et al., 2014)2....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the advantages and characteristics of employing polymer electrolytes in solid-state lithium-ion batteries are discussed, and some critical concepts and points associated with this emerging technology that still require attention are discussed.

1,356 citations


"The Current Process for the Recycli..." refers background in this paper

  • ...In the early 1990s, Moli and Sony used carbon materials with graphite structure to replace metal lithium anodes, and lithium and transition metal composite oxide such as LiCoO2 served as the cathodes, leading to the commercialization of LIBs (Arora et al., 1998; Song et al., 1999; Lee and Lee, 2000; Pattipati et al., 2014)....

    [...]

Journal ArticleDOI
06 Nov 2019-Nature
TL;DR: The current range of approaches to electric-vehicle lithium-ion battery recycling and re-use are outlined, areas for future progress are highlighted, and processes for dismantling and recycling lithium-ions from scrap electric vehicles are outlined.
Abstract: Rapid growth in the market for electric vehicles is imperative, to meet global targets for reducing greenhouse gas emissions, to improve air quality in urban centres and to meet the needs of consumers, with whom electric vehicles are increasingly popular. However, growing numbers of electric vehicles present a serious waste-management challenge for recyclers at end-of-life. Nevertheless, spent batteries may also present an opportunity as manufacturers require access to strategic elements and critical materials for key components in electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could provide a valuable secondary source of materials. Here we outline and evaluate the current range of approaches to electric-vehicle lithium-ion battery recycling and re-use, and highlight areas for future progress. Processes for dismantling and recycling lithium-ion battery packs from scrap electric vehicles are outlined.

1,333 citations


"The Current Process for the Recycli..." refers background or methods in this paper

  • ...Li et al. (2009) reported that under the condition of 80C, 4M HCl solution was leached for 2 h, 99% Co and 97% Li were dissolved. Jha et al. (2013) reported that LiCoO2 was leaching 2M H2SO4 and 5% H2O2 (V/V) for 1 h at 75 C, achieving 99....

    [...]

  • ...Recycling for LIBs usually involves both physical and chemical processes (Harper et al., 2019)....

    [...]

  • ...Li et al. (2009) reported that under the condition of 80C, 4M HCl solution was leached for 2 h, 99% Co and 97% Li were dissolved....

    [...]

Journal ArticleDOI
TL;DR: A review of the current literature on capacity fade mechanisms can be found in this paper, where the authors describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models.
Abstract: The capacity of a lithium‐ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium‐ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium‐ion battery models.

1,227 citations


"The Current Process for the Recycli..." refers background in this paper

  • ...In the early 1990s, Moli and Sony used carbon materials with graphite structure to replace metal lithium anodes, and lithium and transition metal composite oxide such as LiCoO2 served as the cathodes, leading to the commercialization of LIBs (Arora et al., 1998; Song et al., 1999; Lee and Lee, 2000; Pattipati et al., 2014)....

    [...]