scispace - formally typeset
Open AccessJournal ArticleDOI

The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations

Reads0
Chats0
TLDR
In this article, the authors present results from the deep Herschel-Photodetector Array Camera and Spectrometer (PACS) far-infrared blank field extragalactic survey, obtained by combining observations of the Great Observatories Origins Deep Survey (GOODS) fields from the PACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes.
Abstract
We present results from the deepest Herschel-Photodetector Array Camera and Spectrometer (PACS) far-infrared blank field extragalactic survey, obtained by combining observations of the Great Observatories Origins Deep Survey (GOODS) fields from the PACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes. We describe data reduction and theconstruction of images and catalogues. In the deepest parts of the GOODS-S field, the catalogues reach 3σ depths of 0.9, 0.6 and 1.3 mJy at 70, 100 and 160 μm, respectively, and resolve ~75% of the cosmic infrared background at 100 μm and 160 μm into individually detected sources. We use these data to estimate the PACS confusion noise, to derive the PACS number counts down to unprecedented depths, and to determine the infrared luminosity function of galaxies down to L_(IR) = 10^(11) L⊙ at z ~ 1 and L_(IR) = 10^(12) L⊙ at z ~ 2, respectively. For the infrared luminosity function of galaxies, our deep Herschel far-infrared observations are fundamental because they provide more accurate infrared luminosity estimates than those previously obtained from mid-infrared observations. Maps and source catalogues (>3σ) are now publicly released. Combined with the large wealth of multi-wavelength data available for the GOODS fields, these data provide a powerful new tool for studying galaxy evolution over a broad range of redshifts.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Cosmic Star Formation History

TL;DR: In this paper, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Dusty Star Forming Galaxies at High Redshift

TL;DR: In this paper, the authors summarized the current status of star-forming galaxies (DSFGs) studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies), and also the selection and characterization of more recently discovered DSFG populations.
Journal ArticleDOI

Dusty Star-Forming Galaxies at High Redshift

TL;DR: In this paper, the authors summarized the current status of star-forming galaxies (DSFGs), focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies), who were summarized in the last review of this field over a decade ago, Blain et al.
References
More filters
Journal ArticleDOI

SExtractor: Software for source extraction

TL;DR: The SExtractor ( Source Extractor) as mentioned in this paper is an automated software that optimally detects, deblends, measures and classifies sources from astronomical images, which is particularly suited to the analysis of large extragalactic surveys.
Journal ArticleDOI

Star formation in galaxies along the hubble sequence

TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Journal ArticleDOI

Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy

TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Journal ArticleDOI

The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory

Albrecht Poglitsch, +83 more
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Journal ArticleDOI

The Herschel-SPIRE instrument and its in-flight performance

Matthew Joseph Griffin, +189 more
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Related Papers (5)