scispace - formally typeset
Search or ask a question
Journal ArticleDOI

The Design and Applications of High-Performance Ray-Tracing Simulation Platform for 5G and Beyond Wireless Communications: A Tutorial

TL;DR: This tutorial will be especially useful for researchers who work on RT algorithms development and channel modeling to meet the evaluation requirements of 5G and beyond technologies.
Abstract: The application scenarios and requirements are more diverse in the fifth-generation (5G) era than before. In order to successfully support the system design and deployment, accurate channel modeling is important. Ray-tracing (RT) based deterministic modeling approach is accurate with detailed angular information and is a suitable candidate for predicting time-varying channel and multiple-input multiple-output (MIMO) channel for various frequency bands. However, the computational complexity and the utility of RT are the main concerns of users. Aiming at 5G and beyond wireless communications, this paper presents a comprehensive tutorial on the design of RT and the applications. The role of RT and the state-of-the-art RT techniques are reviewed. The features of academic and commercial RT based simulators are summarized and compared. The requirements, challenges, and developing trends of RT to enable the visions are discussed. The practices of the design of high-performance RT simulation platform for 5G and beyond communications are introduced, with the publicly available high-performance cloud-based RT simulation platform as the main reference. The hardware structure, networking, workflow, data flow and fundamental functions of a flexible high-performance RT platform are discussed. The applications of high-performance RT are presented based on two 5G scenarios, i.e., a 3.5 GHz Beijing vehicle-to-infrastructure scenario and a 28 GHz Manhattan outdoor scenario. The questions on how to calibrate and validate RT based on measurements, how to apply RT for mobile communications in moving scenarios, and how to evaluate MIMO beamforming technologies are answered. This tutorial will be especially useful for researchers who work on RT algorithms development and channel modeling to meet the evaluation requirements of 5G and beyond technologies.
Citations
More filters
Journal ArticleDOI
28 May 2020
TL;DR: A complete framework of 5G technologies for smart railways, such as spatial modulation, fast channel estimation, cell-free massive multiple-input–multiple-input-multiple-output (MIMO), mmWave, efficient beamforming, wireless backhaul, ultrareliable low latency communications, and enhanced handover strategies are developed.
Abstract: Railway communications has attracted significant attention from both academia and industries due to the booming development of railways, especially high-speed railways (HSRs). To be in line with the vision of future smart rail communications, the rail transport industry needs to develop innovative communication network architectures and key technologies that ensure high-quality transmissions for both passengers and railway operations and control systems. Under high mobility and with safety, eco-friendliness, comfort, transparency, predictability, and reliability. Fifth-generation (5G) technologies could be a promising solution to dealing with the design challenges on high reliability and high throughput for HSR communications. Based on our in-depth analysis of smart rail traffic services and communication scenarios, we propose a network slicing architecture for a 5G-based HSR system. With a ray tracing-based analysis of radio wave propagation characteristics and channel models for millimeter wave (mmWave) bands in railway scenarios, we draw important conclusions with regard to appropriate operating frequency bands for HSRs. mymargin Specifically, we have identified significant 5G-based key technologies for HSRs, such as spatial modulation, fast channel estimation, cell-free massive multiple-input–multiple-output (MIMO), mmWave, efficient beamforming, wireless backhaul, ultrareliable low latency communications, and enhanced handover strategies. Based on these technologies, we have developed a complete framework of 5G technologies for smart railways and pointed out exciting future research directions.

200 citations


Cites methods from "The Design and Applications of High..."

  • ...The typical approaches used include dimensionality reduction [113], space partitioning methods [114], ray-launching methods [115], and hardwareacceleration methods [116]....

    [...]

Journal ArticleDOI
TL;DR: This paper characterize obstructed V2V channels in the 5-GHz band through measurement-calibrated ray-tracing (RT) simulations, and shows agreement with measured results in the literature for all these channel characteristics.
Abstract: Powered by the Internet of Things, the vehicular ad-hoc networks are expected to evolve into the Internet of Intelligent Vehicles in which each vehicle can be much more efficient in various vehicular and transportation applications. In order to realize this vision, a seamless low-latency and ultrareliable vehicle-to-vehicle (V2V) communication network is required. Thus, it is of importance to characterize the V2V channels in various realistic environments, especially when the line-of-sight between transmitter (Tx) and receiver (Rx) is obstructed. In this paper, we characterize obstructed V2V channels in the 5-GHz band through measurement-calibrated ray-tracing (RT) simulations. To begin, the main objects in the real world are divided into two groups: 1) the small-scale structures (e.g., lampposts, traffic signs, etc.) and 2) the large-scale structures (such as buildings and ground). Then, we integrate the radar cross sections of the small-scale structures into our RT simulator through a framework based on high frequency prediction techniques. For the large-scale structures, we calibrate the electromagnetic and scattering parameters of the large-scale structures through V2V channel measurements. After such integration and calibration, extensive RT simulations for V2V channels with Tx and Rx located on vehicles traveling in the opposite or same direction are realized with various antenna deployments in urban and open space environments, with and without sloped terrain. Based on the RT results, we characterize the path loss, shadow fading, and delay spread of the channel for each case, and show agreement with measured results in the literature for all these channel characteristics.

84 citations


Cites methods from "The Design and Applications of High..."

  • ...In this paper, we utilize a self-developed broadband and dynamic channel RT simulator for channel simulation [42]....

    [...]

Journal ArticleDOI
TL;DR: This article proposes a blockchain-based data security scheme for Ai applications in 6G networks, and discusses two Ai-enabled applications, indoor positioning and autonomous vehicle, in the context of 6G.
Abstract: The sixth generation (6G) networks are expected to provide a fully connected world with terrestrial wireless and satellite communications integration. The design concept of 6G networks is to leverage artificial intelligence (Ai) to promote the intelligent and agile development of network services. intelligent services inevitably involve the processing of large amounts of data, such as storage, computing, and analysis, such that the data may be vulnerable to tampering or contamination by attackers. in this article, we propose a blockchain-based data security scheme for Ai applications in 6G networks. Specifically, we first introduce the 6G architecture (i.e., a space-air-ground-underwater integrated network). Then we discuss two Ai-enabled applications, indoor positioning and autonomous vehicle, in the context of 6G. Through a case study of an indoor navigation system, we demonstrate the effectiveness of blockchain in data security. The integration of Ai and blockchain is developed to evaluate and optimize the quality of intelligent service. Finally, we discuss several open issues about data security in the upcoming 6G networks.

72 citations


Cites background from "The Design and Applications of High..."

  • ...Compared to previous generations, the future 6G has many advantages [3]....

    [...]

Journal ArticleDOI
TL;DR: The good agreement between QuaDRiGa and RT proves that the 13 tables provided in this paper effectively parameterize the intra-wagon scenario for the standard channel model family.
Abstract: In this paper, the intra-wagon channels at 60 and 300 GHz bands are characterized through measurement-validated ray-tracing (RT) simulations. To begin with, an in-house-developed three-dimensional RT simulator is calibrated and validated by a series of millimeter-wave and Terahertz channel measurements inside a high-speed train wagon. Then, the validated RT simulator is used to conduct extensive simulations with different transmitter (Tx) and receiver deployments. At low frequencies, the channel is strongly influenced by the line of sight (LOS), and therefore, is usually classified into LOS and non-LOS (NLOS) regions. However, the simulation results at 60 and 300 GHz bands show that the first-order reflection also imposes a significant impact on the channel characteristics. This motivates us to further classify the NLOS region into light-NLOS (L-NLOS) and deep-NLOS (D-NLOS) according to the existence of the first-order reflection. Through analyzing the area ratios of LOS, L-NLOS, and D-NLOS regions, we evaluate the Tx deployment strategies and suggest the optimum one. Based on RT simulation results, totally 12 cases (three propagation regions with two Tx deployments at two frequencies) are characterized in terms of path loss, shadow fading, root-mean-square delay spread, Rician $K$ -factor, azimuth/elevation angular spread of arrival/departure, cross-polarization ratio, and their cross correlations. All these parameters are fed into the 3GPP-like quasi-deterministic radio channel generator (QuaDRiGa). The good agreement between QuaDRiGa and RT proves that the 13 tables provided in this paper effectively parameterize the intra-wagon scenario for the standard channel model family. These results provide valuable insights into the system design and evaluation for intra-wagon communications.

71 citations


Cites background from "The Design and Applications of High..."

  • ...More details of this platform can be found in [34] as well as via http://raytracer....

    [...]

Posted Content
TL;DR: The road to vastly improving the broadband connectivity in future 6G wireless systems is explored, from extreme capacity with peak data rates up to 1 Tbps, to raising the typical data rates by orders-of-magnitude, and supporting broadband connectivity at railway speeds up to 1000 km/h.
Abstract: This paper explores the road to vastly improving the broadband connectivity in future 6G wireless systems. Different categories of use cases are considered, with peak data rates up to 1 Tbps. Several categories of enablers at the infrastructure, spectrum, and protocol/algorithmic levels are required to realize the intended broadband connectivity goals in 6G. At the infrastructure level, we consider ultra-massive MIMO technology (possibly implemented using holographic radio), intelligent reflecting surfaces, user-centric cell-free networking, integrated access and backhaul, and integrated space and terrestrial networks. At the spectrum level, the network must seamlessly utilize sub-6 GHz bands for coverage and spatial multiplexing of many devices, while higher bands will be mainly used for pushing the peak rates of point-to-point links. Finally, at the protocol/algorithmic level, the enablers include improved coding, modulation, and waveforms to achieve lower latency, higher reliability, and reduced complexity.

69 citations


Additional excerpts

  • ...More information on CloudRT can be found in tutorial [90] and http://www....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations


Additional excerpts

  • ...hundreds of MHz to several GHz [11]–[15]....

    [...]

Journal ArticleDOI
TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Abstract: Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.

6,184 citations

Journal ArticleDOI
TL;DR: The mathematical justification of the theory on the basis of electromagnetic theory is described, and the applicability of this theory, or a modification of it, to other branches of physics is explained.
Abstract: The geometrical theory of diffraction is an extension of geometrical optics which accounts for diffraction. It introduces diffracted rays in addition to the usual rays of geometrical optics. These rays are produced by incident rays which hit edges, corners, or vertices of boundary surfaces, or which graze such surfaces. Various laws of diffraction, analogous to the laws of reflection and refraction, are employed to characterize the diffracted rays. A modified form of Fermat’s principle, equivalent to these laws, can also be used. Diffracted wave fronts are defined, which can be found by a Huygens wavelet construction. There is an associated phase or eikonal function which satisfies the eikonal equation. In addition complex or imaginary rays are introduced. A field is associated with each ray and the total field at a point is the sum of the fields on all rays through the point. The phase of the field on a ray is proportional to the optical length of the ray from some reference point. The amplitude varies in accordance with the principle of conservation of energy in a narrow tube of rays. The initial value of the field on a diffracted ray is determined from the incident field with the aid of an appropriate diffraction coefficient. These diffraction coefficients are determined from certain canonical problems. They all vanish as the wavelength tends to zero. The theory is applied to diffraction by an aperture in a thin screen diffraction by a disk, etc., to illustrate it. Agreement is shown between the predictions of the theory and various other theoretical analyses of some of these problems. Experimental confirmation of the theory is also presented. The mathematical justification of the theory on the basis of electromagnetic theory is described. Finally, the applicability of this theory, or a modification of it, to other branches of physics is explained.

3,032 citations


"The Design and Applications of High..." refers methods in this paper

  • ...In the 1960s, Keller [89] developed the geometrical theory of diffraction (GTD) by applying the Fermat’s principle and formulating the law of diffraction: the...

    [...]

  • ...In the 1960s, Keller [89] developed the geometrical theory of diffraction (GTD) by applying the Fermat’s principle and formulating the law of diffraction: the diffracted rays lay on the exterior surface of a cone (Keller’s cone), which has its vertex at the diffraction point and an opening angle equal to that formed by the incident ray with the edge....

    [...]

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations


Additional excerpts

  • ...hundreds of MHz to several GHz [11]–[15]....

    [...]

Journal ArticleDOI
01 Nov 1974
TL;DR: In this article, a compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edse formed by perfectly conducting curved plane surfaces is obtained, which is based on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by cylindrical, conical, and spherical waves.
Abstract: A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edse formed by perfectly conducting curved ot plane surfaces is obtained. This diffraction coefficient remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. Our method is based on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray-fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresenel integrals, which ensure that the total field is continuous at shadow and reflection boundaries. The diffraction coefficients have the same form for the different types of edge illumination; only the arguments of the Fresnel integrals are different. Since diffraction is a local phenomenon, and locally the curved edge structure is wedge shaped, this result is readily extended to the curved wedge. It is interesting that even though the polarizations and the wavefront curvatures of the incident, reflected, and diffracted waves are markedly different, the total field calculated from this high-frequency solution for the curved wedge is continuous at shadow and reflection boundaries.

2,582 citations


"The Design and Applications of High..." refers background or methods in this paper

  • ...For lossy wedges, the authors of [45] and [90]–[93] developed heuristic methods to determine UTD diffraction coefficients....

    [...]

  • ...The combination between RT and uniform theory of diffraction (UTD) [48] is frequently applied to radio coverage prediction [49]....

    [...]

  • ...Thus, the UTD method was pioneered by Kouyoumjian and Pathak [48], which is valid for perfect electric conductors (PEC)....

    [...]

  • ...Apart from the UTD families, the uniform asymptotic theory (UAT) methods can also provide continuous diffracted field across shadow boundaries developed in [98] and [99]....

    [...]

  • ...combination between RT and uniform theory of diffraction (UTD) [48] is frequently applied to radio coverage prediction [49]....

    [...]